1887

Abstract

Species of the bacterial genus live in a symbiotic relationship with entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of isolates.

Funding
This study was supported by the:
  • University of Bern
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000905
2020-04-17
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/6/522.html?itemId=/content/journal/micro/10.1099/mic.0.000905&mimeType=html&fmt=ahah

References

  1. Hazir S, Kaya HK, Stock SP, Keskin N. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk J Biol 2004; 27:181–202
    [Google Scholar]
  2. Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009; 13:224–230 [View Article][PubMed]
    [Google Scholar]
  3. Gerrard J, Waterfield N, Vohra R, ffrench-Constant R. Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 2004; 6:229–237 [View Article][PubMed]
    [Google Scholar]
  4. Smart GC. Entomopathogenic nematodes for the biological control of insects. J Nematol 1995; 27:529[PubMed]
    [Google Scholar]
  5. Dowling A, Waterfield NR. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 2007; 49:436–451 [View Article][PubMed]
    [Google Scholar]
  6. Ciche TA, Kim K-S, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH. Cell invasion and Matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 2008; 74:2275–2287 [View Article][PubMed]
    [Google Scholar]
  7. Zhang X, Machado RAR, Doan CV, Arce CCM, Hu L et al. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. Elife 2019; 8:e46668 [View Article][PubMed]
    [Google Scholar]
  8. Gerdes E, Upadhyay D, Mandjiny S, Bullard-Dillard R, Storms M. Photorhabdus luminescens: virulent properties and agricultural applications. Am J Agr Forest 2015; 3:171–177 [View Article]
    [Google Scholar]
  9. Waterfield NR, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annu Rev Microbiol 2009; 63:557–574 [View Article][PubMed]
    [Google Scholar]
  10. Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 2012; 44:218–225[PubMed]
    [Google Scholar]
  11. Jackson JJ. Field performance of entomopathogenic nematodes for suppression of western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 1996; 89:366–372 [View Article]
    [Google Scholar]
  12. Hiltpold I. Prospects in the application technology and formulation of entomopathogenic nematodes for biological control of insect pests. Nematode Pathogenesis of Insects and Other Pests Cham, Switzerland: Springer; 2015 pp 187–205
    [Google Scholar]
  13. Costa SCP, Girard PA, Brehélin M, Zumbihl R. The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun 2009; 77:1022–1030 [View Article][PubMed]
    [Google Scholar]
  14. Hapeshi A, Waterfield NR. Photorhabdus asymbiotica as an insect and human pathogen. The Molecular Biology of Photorhabdus Bacteria Cham, Switzerland: Springer; 2016 pp 159–177
    [Google Scholar]
  15. Weissfeld AS, Halliday RJ, Simmons DE, Trevino EA, Vance PH et al. Photorhabdus asymbiotica, a pathogen emerging on two continents that proves that there is no substitute for a well-trained clinical microbiologist. J Clin Microbiol 2005; 43:4152–4155 [View Article][PubMed]
    [Google Scholar]
  16. Gerrard JG, Joyce SA, Clarke DJ, ffrench-Constant RH, Nimmo GR et al. Nematode symbiont for Photorhabdus asymbiotica . Emerg Infect Dis 2006; 12:1562–1564 [View Article][PubMed]
    [Google Scholar]
  17. Kontnik R, Crawford JM, Clardy J. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens . ACS Chem Biol 2010; 5:659–665 [View Article][PubMed]
    [Google Scholar]
  18. Joyce SA, Lango L, Clarke DJ. The regulation of secondary metabolism and mutualism in the insect pathogenic bacterium Photorhabdus luminescens . Advances in Applied Microbiology 76 Amsterdam, Netherlands: Elsevier; 2011 pp 1–25
    [Google Scholar]
  19. Clarke DJ. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 2008; 10:2159–2167 [View Article][PubMed]
    [Google Scholar]
  20. Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N et al. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environ Microbiol 2017; 19:119–129 [View Article][PubMed]
    [Google Scholar]
  21. Joyce SA, Brachmann AO, Glazer I, Lango L, Schwär G et al. Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed Engl 2008; 47:1942–1945 [View Article][PubMed]
    [Google Scholar]
  22. Kushwah J, Somvanshi VS. Photorhabdus: a microbial factory of insect-killing toxins. Microbial Factories Cham, Switzerland: Springer; 2015 pp 235–240
    [Google Scholar]
  23. Campos-Herrera R, Jaffuel G, Chiriboga X, Blanco-Pérez R, Fesselet M et al. Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant Soil 2015; 389:237–255 [View Article]
    [Google Scholar]
  24. Campos-Herrera R, Půža V, Jaffuel G, Blanco-Pérez R, Čepulytė-Rakauskienė R et al. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: implications for their natural distribution in Swiss agricultural soils. J Invertebr Pathol 2015; 132:216–227 [View Article][PubMed]
    [Google Scholar]
  25. Joyce SA, Watson RJ, Clarke DJ. The regulation of pathogenicity and mutualism in Photorhabdus . Curr Opin Microbiol 2006; 9:127–132 [View Article][PubMed]
    [Google Scholar]
  26. Strauch O, Ehlers R-U. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 1998; 50:369–374 [View Article]
    [Google Scholar]
  27. Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E et al. Insecticidal toxins from the bacterium Photorhabdus luminescens . Science 1998; 280:2129–2132 [View Article][PubMed]
    [Google Scholar]
  28. Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 2010; 327:1139–1142 [View Article][PubMed]
    [Google Scholar]
  29. Li J, Chen G, Wu H, Webster JM. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens . Appl Environ Microbiol 1995; 61:4329–4333 [View Article][PubMed]
    [Google Scholar]
  30. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens . Appl Environ Microbiol 2002; 68:3780–3789 [View Article][PubMed]
    [Google Scholar]
  31. Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 2012; 7:e43835 [View Article][PubMed]
    [Google Scholar]
  32. Zhang X, van Doan C, Arce CCM, Hu L, Gruenig S et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc Natl Acad Sci U S A 2019; 116:23174–23181 [View Article][PubMed]
    [Google Scholar]
  33. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018; 68:2664–2681 [View Article][PubMed]
    [Google Scholar]
  34. Machado RAR, Bruno P, Arce CCM, Liechti N, Köhler A et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. Int J Syst Evol Microbiol 2019; 69:652–661 [View Article][PubMed]
    [Google Scholar]
  35. Thomas GM, Poinar G. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Evol Microbiol 1979; 29:352–360
    [Google Scholar]
  36. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008; 58:2579–2581 [View Article][PubMed]
    [Google Scholar]
  37. Szállás E, Koch C, Fodor A, Burghardt J, Buss O et al. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens . Int J Syst Bacteriol 1997; 47:402–407 [View Article][PubMed]
    [Google Scholar]
  38. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004; 27:36–42 [View Article][PubMed]
    [Google Scholar]
  39. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999; 49 Pt 4:1645–1656 [View Article][PubMed]
    [Google Scholar]
  40. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp.(Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Evol Microbiol 1993; 43:249–255
    [Google Scholar]
  41. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011; 62:539–543 [View Article][PubMed]
    [Google Scholar]
  42. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010; 61:291–297 [View Article][PubMed]
    [Google Scholar]
  43. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004; 54:1301–1310 [View Article][PubMed]
    [Google Scholar]
  44. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013; 63:1853–1858 [View Article][PubMed]
    [Google Scholar]
  45. Gerrard JG, Stevens RP. A review of clinical cases of infection with Photorhabdus asymbiotica . The Molecular Biology of Photorhabdus Bacteria 402, ffrench-Constant RH (ed). Cham: Springer International Publishing; 2017 pp 179–191
    [Google Scholar]
  46. Gerrard JG, Vohra R, Nimmo GR. Identification of Photorhabdus asymbiotica in cases of human infection. Commun Dis Intell Q Rep 2003; 27:540[PubMed]
    [Google Scholar]
  47. Dutta A, Flores AR, Revell PA, Owens L. Neonatal bacteremia and cutaneous lesions caused by Photorhabdus luminescens: A rare Gram-negative bioluminescent bacterium. J Pediatric Infect Dis Soc 2018; 7:e182–e184 [View Article][PubMed]
    [Google Scholar]
  48. Brunel B, Givaudan A, Lanois A, Akhurst RJ, Boemare N. Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 1997; 63:574–580 [View Article][PubMed]
    [Google Scholar]
  49. Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM et al. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 1999; 37:3647–3653 [View Article][PubMed]
    [Google Scholar]
  50. Glaeser SP, Tobias NJ, Thanwisai A, Chantratita N, Bode HB et al. Photorhabdusluminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditisbaujardi nematodes . Int J Syst Evol Microbiol 2017; 67:1046–1051 [View Article][PubMed]
    [Google Scholar]
  51. Vargha M, Takáts Z, Konopka A, Nakatsu CH. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 2006; 66:399–409 [View Article][PubMed]
    [Google Scholar]
  52. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49:543–551 [View Article][PubMed]
    [Google Scholar]
  53. Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 2010; 8:74–82 [View Article][PubMed]
    [Google Scholar]
  54. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B et al. Maldi-Tof mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 2011; 44:104–109 [View Article][PubMed]
    [Google Scholar]
  55. Maier T, Klepel S, Renner U, Kostrzewa M. Fast and reliable MALDI-TOF MS–based microorganism identification. Nat Methods 2006; 3:i–0 [View Article]
    [Google Scholar]
  56. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010; 60:1921–1937 [View Article][PubMed]
    [Google Scholar]
  57. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  58. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  59. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  60. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  61. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006; 7:357 [View Article]
    [Google Scholar]
  62. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  63. Kuhnert P, Bisgaard M, Korczak BM, Schwendener S, Christensen H et al. Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J Microbiol Methods 2012; 89:1–7 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000905
Loading
/content/journal/micro/10.1099/mic.0.000905
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error