1887

Abstract

Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen . This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. is relatively poorly studied compared to the closely related model yeast or to the pathogenic yeast . Still, several research groups have started to identify the actors of iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of and have shed new light on the evolution of fungal iron homeostasis.

Keyword(s): evolution , iron , regulatory networks and yeast
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000807
2019-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/10/1041.html?itemId=/content/journal/micro/10.1099/mic.0.000807&mimeType=html&fmt=ahah

References

  1. Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science 2012;336:647 [CrossRef]
    [Google Scholar]
  2. Azie N, Neofytos D, Pfaller M, Meier-Kriesche H-U, Quan S-P et al. The path (prospective antifungal therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis 2012;73:293–300 [CrossRef]
    [Google Scholar]
  3. Pfaller MA, Andes DR, Diekema DJ, Horn DL, Reboli AC et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (path) registry 2004-2008. PLoS One 2014;9:e101510 [CrossRef]
    [Google Scholar]
  4. Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 2012;73:45–48 [CrossRef]
    [Google Scholar]
  5. Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med 2013;5:63 [CrossRef]
    [Google Scholar]
  6. Li L, Redding S, Dongari-Bagtzoglou A. Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 2007;86:204–215 [CrossRef]
    [Google Scholar]
  7. Grim SA, Berger K, Teng C, Gupta S, Layden JE et al. Timing of susceptibility-based antifungal drug administration in patients with Candida bloodstream infection: correlation with outcomes. J Antimicrob Chemother 2012;67:707–714 [CrossRef]
    [Google Scholar]
  8. Lewis RE, Viale P, Kontoyiannis DP. The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence 2012;3:368–376 [CrossRef]
    [Google Scholar]
  9. López-Fuentes E, Gutiérrez-Escobedo G, Timmermans B, Van Dijck P, De Las Peñas A et al. Candida glabrata’s genome plasticity confers a unique pattern of expressed cell wall proteins. J Fungi 2018;4:67 [CrossRef]
    [Google Scholar]
  10. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al. Genome evolution in yeasts. Nature 2004;430:35–44 [CrossRef]
    [Google Scholar]
  11. Roetzer A, Gabaldón T, Schüller C. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 2011;314:1–9 [CrossRef]
    [Google Scholar]
  12. Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 2013;14:623 [CrossRef]
    [Google Scholar]
  13. Gabaldon T, Carrete L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res 2015
    [Google Scholar]
  14. Gabaldón T, Fairhead C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr Genet 2019;65:93–98 [CrossRef]
    [Google Scholar]
  15. Brunke S, Hube B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol 2013;15:701–708 [CrossRef]
    [Google Scholar]
  16. Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2011;9:737–748 [CrossRef]
    [Google Scholar]
  17. Brunke S, Seider K, Fischer D, Jacobsen ID, Kasper L et al. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. PLoS Pathog 2014;10:e1004478 [CrossRef]
    [Google Scholar]
  18. Csank C, Haynes K. Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett 2000;189:115–120 [CrossRef]
    [Google Scholar]
  19. Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 2005;8:378–384 [CrossRef]
    [Google Scholar]
  20. Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A 2007;104:7628–7633 [CrossRef]
    [Google Scholar]
  21. Roetzer A, Gratz N, Kovarik P, Schüller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2010;12:199–216 [CrossRef]
    [Google Scholar]
  22. Seider K, Brunke S, Schild L, Jablonowski N, Wilson D et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 2011;187:3072–3086 [CrossRef]
    [Google Scholar]
  23. Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R. Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 2012;8:e1002863 [CrossRef]
    [Google Scholar]
  24. Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res 2015;15:fov042 [CrossRef]
    [Google Scholar]
  25. Seider K, Gerwien F, Kasper L, Allert S, Brunke S et al. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryot Cell 2014;13:170–183 [CrossRef]
    [Google Scholar]
  26. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe 2013;13:509–519 [CrossRef]
    [Google Scholar]
  27. Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol 2010;12:1691–1702 [CrossRef]
    [Google Scholar]
  28. Cellier MF, Courville P, Campion C. Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 2007;9:1662–1670 [CrossRef]
    [Google Scholar]
  29. Masson PL, Heremans JF, Schonne E, Lactoferrin SE. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130:643–658 [CrossRef]
    [Google Scholar]
  30. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Microbiol 2012;10:525–537 [CrossRef]
    [Google Scholar]
  31. Potrykus J, Stead D, Maccallum DM, Urgast DS, Raab A et al. Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events. PLoS Pathog 2013;9:e1003676 [CrossRef]
    [Google Scholar]
  32. Bairwa G, Hee Jung W, Kronstad JW. Iron acquisition in fungal pathogens of humans. Metallomics 2017;9:215–227 [CrossRef]
    [Google Scholar]
  33. Noble SM. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol 2013;16:708–715 [CrossRef]
    [Google Scholar]
  34. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018;42:0101 2018; [CrossRef]
    [Google Scholar]
  35. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR et al. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 1998;273:23716–23721 [CrossRef]
    [Google Scholar]
  36. Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 2001;276:10218–10223 [CrossRef]
    [Google Scholar]
  37. Askwith C, Eide D, Van Ho A, Bernard PS, Li L et al. The Fet3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994;76:403–410 [CrossRef]
    [Google Scholar]
  38. Georgatsou E, Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 1994;14:3065–3073 [CrossRef]
    [Google Scholar]
  39. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 1996;271:1552–1557 [CrossRef]
    [Google Scholar]
  40. Cohen A, Nelson H, Nelson N. The family of SMF metal ion transporters in yeast cells. J Biol Chem 2000;275:33388–33394 [CrossRef]
    [Google Scholar]
  41. Dix D, Bridgham J, Broderius M, Eide D. Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem 1997;272:11770–11777
    [Google Scholar]
  42. Hassett R, Dix DR, Eide DJ, Kosman DJ. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 2000;351 Pt 2:477–484 [CrossRef]
    [Google Scholar]
  43. Portnoy ME, Jensen LT, Culotta VC. The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 2002;362:119–124 [CrossRef]
    [Google Scholar]
  44. Supek F, Supekova L, Nelson H, Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A 1996;93:5105–5110 [CrossRef]
    [Google Scholar]
  45. Waters BM, Eide DJ. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 2002;277:33749–33757 [CrossRef]
    [Google Scholar]
  46. Lin SJ, Pufahl RA, Dancis A, O'Halloran TV, Culotta VC. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997;272:9215–9220 [CrossRef]
    [Google Scholar]
  47. Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T et al. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 1995;92:2632–2636 [CrossRef]
    [Google Scholar]
  48. Qi J, Han A, Yang Z, Li C. Metal-sensing transcription factors Mac1p and Aft1p coordinately regulate vacuolar copper transporter CTR2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2012;423:424–428 [CrossRef]
    [Google Scholar]
  49. Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014;7:196–208 [CrossRef]
    [Google Scholar]
  50. Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 2003;62:316–330 [CrossRef]
    [Google Scholar]
  51. Philpott CC. Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763;2006:636–645
    [Google Scholar]
  52. Heymann P, Ernst JF, Winkelmann G. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 1999;12:301–306 [CrossRef]
    [Google Scholar]
  53. Heymann P, Ernst JF, Winkelmann G, Winkelmann G. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 2000;186:221–227 [CrossRef]
    [Google Scholar]
  54. Heymann P, Ernst JF, Winkelmann G. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 2000;13:65–72 [CrossRef]
    [Google Scholar]
  55. Lesuisse E, Simon-Casteras M, Labbe P. Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 1998;144:3455–3462 [CrossRef]
    [Google Scholar]
  56. Yun CW, Tiedeman JS, Moore RE, Philpott CC. Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 2000;275:16354–16359 [CrossRef]
    [Google Scholar]
  57. Foury F, Talibi D. Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J Biol Chem 2001;276:7762–7768
    [Google Scholar]
  58. Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO et al. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 2001;276:49244–49250 [CrossRef]
    [Google Scholar]
  59. Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T et al. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 2014;10:e1004407 [CrossRef]
    [Google Scholar]
  60. Okamoto-Shibayama K, Kikuchi Y, Kokubu E, Sato Y, Ishihara K. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth. FEMS Yeast Res 2014;14:674–677 [CrossRef]
    [Google Scholar]
  61. Weissman Z, Kornitzer D. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004;53:1209–1220 [CrossRef]
    [Google Scholar]
  62. Moukadiri I, Armero J, Abad A, Sentandreu R, Zueco J. Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol 1997;179:2154–2162 [CrossRef]
    [Google Scholar]
  63. Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ. Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae. J Biol Chem 2006;281:13355–13364 [CrossRef]
    [Google Scholar]
  64. Urbanowski JL, Piper RC. The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 1999;274:38061–38070 [CrossRef]
    [Google Scholar]
  65. Portnoy ME, Liu XF, Culotta VC. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Mol Cell Biol 2000;20:7893–7902 [CrossRef]
    [Google Scholar]
  66. Singh A, Kaur N, Kosman DJ. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. J Biol Chem 2007;282:28619–28626 [CrossRef]
    [Google Scholar]
  67. Chen OS, Kaplan J. CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation. J Biol Chem 2000;275:7626–7632 [CrossRef]
    [Google Scholar]
  68. Li L, Chen OS, McVey Ward D, Kaplan J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 2001;276:29515–29519 [CrossRef]
    [Google Scholar]
  69. Lin H, Li L, Jia X, Ward DM, Kaplan J. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J Biol Chem 2011;286:3851–3862 [CrossRef]
    [Google Scholar]
  70. Braymer JJ, Lill R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 2017;292:12754–12763 [CrossRef]
    [Google Scholar]
  71. Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018;23:509–520 [CrossRef]
    [Google Scholar]
  72. Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 2015;94:280–291 [CrossRef]
    [Google Scholar]
  73. Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 2010;12:373–385 [CrossRef]
    [Google Scholar]
  74. Zhang Y, Liu L, Wu X, An X, Stubbe J et al. Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J Biol Chem 2011;286:41499–41509 [CrossRef]
    [Google Scholar]
  75. Gelling C, Dawes IW, Richhardt N, Lill R, Mühlenhoff U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 2008;28:1851–1861 [CrossRef]
    [Google Scholar]
  76. Melber A, Na U, Vashisht A, Weiler BD, Lill R et al. Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. Elife 2016;5:e159911708 2016; [CrossRef]
    [Google Scholar]
  77. Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011;286:41205–41216 [CrossRef]
    [Google Scholar]
  78. Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S et al. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. Elife 2016;5:e166731708 2016; [CrossRef]
    [Google Scholar]
  79. Paul VD, Mühlenhoff U, Stümpfig M, Seebacher J, Kugler KG et al. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. Elife 2015;4:e08231 [CrossRef]
    [Google Scholar]
  80. Hoffman M, Góra M, Rytka J. Identification of rate-limiting steps in yeast heme biosynthesis. Biochem Biophys Res Commun 2003;310:1247–1253 [CrossRef]
    [Google Scholar]
  81. Fernández-Murray JP, Prykhozhij SV, Dufay JN, Steele SL, Gaston D et al. Glycine and folate ameliorate models of congenital sideroblastic anemia. PLoS Genet 2016;12:e1005783 [CrossRef]
    [Google Scholar]
  82. Lunetti P, Damiano F, De Benedetto G, Siculella L, Pennetta A et al. Characterization of human and yeast mitochondrial glycine carriers with implications for heme biosynthesis and anemia. J Biol Chem 2016;291:19746–19759 [CrossRef]
    [Google Scholar]
  83. Kim D, Yukl ET, Moënne-Loccoz P, Montellano PROde. Fungal heme oxygenases: functional expression and characterization of Hmx1 from Saccharomyces cerevisiae and CaHmx1 from Candida albicans. Biochemistry 2006;45:14772–14780 [CrossRef]
    [Google Scholar]
  84. Protchenko O, Philpott CC. Regulation of intracellular heme levels by Hmx1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J Biol Chem 2003;278:36582–36587 [CrossRef]
    [Google Scholar]
  85. Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B et al. The yeast transcriptome in aerobic and hypoxic conditions: effects of Hap1, Rox1, ROX3 and Srb10 deletions. Mol Microbiol 2002;43:545–555 [CrossRef]
    [Google Scholar]
  86. Guarente L. Transcriptional coactivators in yeast and beyond. Trends Biochem Sci 1995;20:517–521 [CrossRef]
    [Google Scholar]
  87. Zhang L, Hach A. Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 1999;56:415–426 [CrossRef]
    [Google Scholar]
  88. Crisp RJ, Adkins EM, Kimmel E, Kaplan J. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes. Embo J 2006;25:512–521 [CrossRef]
    [Google Scholar]
  89. Crisp RJ, Pollington A, Galea C, Jaron S, Yamaguchi-Iwai Y et al. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. J Biol Chem 2003;278:45499–45506 [CrossRef]
    [Google Scholar]
  90. Mühlenhoff U, Hoffmann B, Richter N, Rietzschel N, Spantgar F et al. Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015;94:292–308 [CrossRef]
    [Google Scholar]
  91. Foury F, Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem 2002;277:24475–24483 [CrossRef]
    [Google Scholar]
  92. Froschauer EM, Schweyen RJ, Wiesenberger G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim Biophys Acta 1788;2009:1044–1050
    [Google Scholar]
  93. Mühlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T et al. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 2003;278:40612–40620 [CrossRef]
    [Google Scholar]
  94. Zhang Y, Lyver ER, Knight SAB, Lesuisse E, Dancis A. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 2005;280:19794–19807 [CrossRef]
    [Google Scholar]
  95. Zhang Y, Lyver ER, Knight SAB, Pain D, Lesuisse E et al. Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J Biol Chem 2006;281:22493–22502 [CrossRef]
    [Google Scholar]
  96. Froschauer EM, Rietzschel N, Hassler MR, Binder M, Schweyen RJ et al. The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron. Biochem J 2013;455:57–65 [CrossRef]
    [Google Scholar]
  97. Yoon H, Zhang Y, Pain J, Lyver ER, Lesuisse E et al. Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria. Biochem J 2011;440:137–146 [CrossRef]
    [Google Scholar]
  98. Li L, Kaplan J. Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 1997;272:28485–28493 [CrossRef]
    [Google Scholar]
  99. Li L, Miao R, Jia X, Ward DM, Kaplan J. Expression of the yeast cation diffusion facilitators Mmt1 and Mmt2 affects mitochondrial and cellular iron homeostasis: evidence for mitochondrial iron export. J Biol Chem 2014;289:17132–17141 [CrossRef]
    [Google Scholar]
  100. Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA et al. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018;293:10782–10795 [CrossRef]
    [Google Scholar]
  101. Gerwien F, Safyan A, Wisgott S, Hille F, Kaemmer P et al. A novel hybrid iron regulation network combines features from pathogenic and nonpathogenic yeasts. MBio 2016;7:e01782-161810 2016; [CrossRef]
    [Google Scholar]
  102. Srivastava VK, Suneetha KJ, Kaur R. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata. Biochem J 2014;463:103–114 [CrossRef]
    [Google Scholar]
  103. Sharma V, Purushotham R, Kaur R. The phosphoinositide 3-kinase regulates retrograde trafficking of the iron permease CgFtr1 and iron homeostasis in Candida glabrata. J Biol Chem 2016;291:24715–24734 [CrossRef]
    [Google Scholar]
  104. Gerwien F, Safyan A, Wisgott S, Brunke S, Kasper L et al. The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition. Front Microbiol 2017;8:1055 [CrossRef]
    [Google Scholar]
  105. Nagi M, Tanabe K, Nakayama H, Ueno K, Yamagoe S et al. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy 2016;12:1259–1271 [CrossRef]
    [Google Scholar]
  106. Benchouaia M, Ripoche H, Sissoko M, Thiébaut A, Merhej J et al. Comparative transcriptomics highlights new features of the iron starvation response in the human pathogen Candida glabrata. Front Microbiol 2018;9:2689 [CrossRef]
    [Google Scholar]
  107. Brunke S, Quintin J, Kasper L, Jacobsen ID, Richter ME et al. Of mice, flies-and men? Comparing fungal infection models for large-scale screening efforts. Dis Model Mech 2015;8:473–486 [CrossRef]
    [Google Scholar]
  108. Nevitt T, Thiele DJ. Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 2011;7:e1001322 [CrossRef]
    [Google Scholar]
  109. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G et al. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 2002;70:5246–5255 [CrossRef]
    [Google Scholar]
  110. Hu C-J, Bai C, Zheng X-D, Wang Y-M, Wang Y. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem 2002;277:30598–30605 [CrossRef]
    [Google Scholar]
  111. Hosogaya N, Miyazaki T, Nagi M, Tanabe K, Minematsu A et al. The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. FEMS Yeast Res 2013;13:411–421 [CrossRef]
    [Google Scholar]
  112. Nagi M, Tanabe K, Ueno K, Nakayama H, Aoyama T et al. The Candida glabrata sterol scavenging mechanism, mediated by the ATP-binding cassette transporter Aus1p, is regulated by iron limitation. Mol Microbiol 2013;88:371–381 [CrossRef]
    [Google Scholar]
  113. Merhej J, Thiebaut A, Blugeon C, Pouch J, Ali Chaouche MEA et al. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata. Front Microbiol 2016;7:645 [CrossRef]
    [Google Scholar]
  114. Martínez-Pastor MT, Perea-García A, Puig S. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017;33:75 [CrossRef]
    [Google Scholar]
  115. Puig S, Askeland E, Thiele DJ. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005;120:99–110 [CrossRef]
    [Google Scholar]
  116. An X, Zhang C, Sclafani RA, Seligman P, Huang M. The late-annotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. Microbiologyopen 2015;4:941–951 [CrossRef]
    [Google Scholar]
  117. Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J et al. Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 2004;15:1233–1243 [CrossRef]
    [Google Scholar]
  118. Garland SA, Hoff K, Vickery LE, Culotta VC. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 1999;294:897–907 [CrossRef]
    [Google Scholar]
  119. Outten CE, Albetel A-N. Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details. Curr Opin Microbiol 2013;16:662–668 [CrossRef]
    [Google Scholar]
  120. Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann JP et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 2014;111:4043–4048 [CrossRef]
    [Google Scholar]
  121. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A 2001;98:14322–14327 [CrossRef]
    [Google Scholar]
  122. Babu MM, Iyer LM, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 2006;34:6505–6520 [CrossRef]
    [Google Scholar]
  123. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. Iron-regulated DNA binding by the Aft1 protein controls the iron regulon in yeast. EMBO J 1996;15:3377–3384 [CrossRef]
    [Google Scholar]
  124. Courel M, Lallet S, Camadro J-M, Blaiseau P-L. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 2005;25:6760–6771 [CrossRef]
    [Google Scholar]
  125. Blaiseau PL, Lesuisse E, Camadro JM. Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 2001;276:34221–34226 [CrossRef]
    [Google Scholar]
  126. Yamaguchi-Iwai Y, Dancis A, Klausner RD. Aft1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. Embo J 1995;14:1231–1239 [CrossRef]
    [Google Scholar]
  127. Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 2005;280:10135–10140 [CrossRef]
    [Google Scholar]
  128. Philpott CC, Protchenko O, Kim YW, Boretsky Y, Shakoury-Elizeh M. The response to iron deprivation in Saccharomyces cerevisiae : expression of siderophore-based systems of iron uptake. Biochem Soc Trans 2002;30:698–702 [CrossRef]
    [Google Scholar]
  129. Rutherford JC, Jaron S, Winge DR. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem 2003;278:27636–27643 [CrossRef]
    [Google Scholar]
  130. Pérez-Sampietro M, Serra-Cardona A, Canadell D, Casas C, Ariño J et al. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci Rep 2016;6:32836 [CrossRef]
    [Google Scholar]
  131. Andreadis C, Nikolaou C, Fragiadakis GS, Tsiliki G, Alexandraki D. Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic Acids Res 2014;42:12650–12667 [CrossRef]
    [Google Scholar]
  132. Berthelet S, Usher J, Shulist K, Hamza A, Maltez N et al. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics 2010;185:1111–1128 [CrossRef]
    [Google Scholar]
  133. Hamza A, Baetz K. Iron-responsive transcription factor Aft1 interacts with kinetochore protein Iml3 and promotes pericentromeric cohesin. J Biol Chem 2012;287:4139–4147 [CrossRef]
    [Google Scholar]
  134. Measday V, Baetz K, Guzzo J, Yuen K, Kwok T et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci U S A 2005;102:13956–13961 [CrossRef]
    [Google Scholar]
  135. Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R. Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 2002;277:18914–18918 [CrossRef]
    [Google Scholar]
  136. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol Biol Cell 2007;18:2980–2990 [CrossRef]
    [Google Scholar]
  137. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression. Mol Cell Biol 2012;32:4998–5008 [CrossRef]
    [Google Scholar]
  138. Kumánovics A, Chen OS, Li L, Bagley D, Adkins EM et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 2008;283:10276–10286 [CrossRef]
    [Google Scholar]
  139. Li H, Mapolelo DT, Dingra NN, Keller G, Riggs-Gelasco PJ et al. Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J Biol Chem 2011;286:867–876 [CrossRef]
    [Google Scholar]
  140. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 2009;48:9569–9581 [CrossRef]
    [Google Scholar]
  141. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 2006;281:17661–17669 [CrossRef]
    [Google Scholar]
  142. Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 2006;119:4554–4564 [CrossRef]
    [Google Scholar]
  143. Hausmann A, Samans B, Lill R, Mühlenhoff U. Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis. J Biol Chem 2008;283:8318–8330 [CrossRef]
    [Google Scholar]
  144. Chen OS, Crisp RJ, Valachovic M, Bard M, Winge DR et al. Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem 2004;279:29513–29518 [CrossRef]
    [Google Scholar]
  145. Kumar C, Igbaria A, D'Autreaux B, Planson A-G, Junot C et al. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 2011;30:2044–2056 [CrossRef]
    [Google Scholar]
  146. Martins TS, Pereira C, Canadell D, Vilaca R, Teixeira V et al. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 1863;2018:61–70
    [Google Scholar]
  147. Pedro-Segura E, Vergara SV, Rodríguez-Navarro S, Parker R, Thiele DJ et al. The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J Biol Chem 2008;283:28527–28535 [CrossRef]
    [Google Scholar]
  148. Prouteau M, Daugeron M-C, Séraphin B. Regulation of are transcript 3' end processing by the yeast Cth2 mRNA decay factor. EMBO J 2008;27:2966–2976 [CrossRef]
    [Google Scholar]
  149. Vergara SV, Puig S, Thiele DJ. Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol Cell Biol 2011;31:417–429 [CrossRef]
    [Google Scholar]
  150. Puig S, Vergara SV, Thiele DJ. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 2008;7:555–564 [CrossRef]
    [Google Scholar]
  151. Ramos-Alonso L, Romero AM, Soler Maria Àngel, Perea-García A, Alepuz P et al. Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency. PLoS Genet 2018;14:e1007476 [CrossRef]
    [Google Scholar]
  152. Ciais D, Bohnsack MT, Tollervey D. The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3' processing pathway. Nucleic Acids Res 2008;36:3075–3084 [CrossRef]
    [Google Scholar]
  153. Martínez-Pastor MT, de Llanos R, Romero AM, Puig S. Post-transcriptional regulation of iron homeostasis in Saccharomyces cerevisiae. Int J Mol Sci 2013;14:15785–15809 [CrossRef]
    [Google Scholar]
  154. Romero AM, Martínez-Pastor M, Du G, Solé C, Carlos M et al. Phosphorylation and proteasome recognition of the mRNA-binding protein Cth2 facilitates yeast adaptation to iron deficiency. MBio 2018;9:e01694-181809 2018; [CrossRef]
    [Google Scholar]
  155. Ihrig J, Hausmann A, Hain A, Richter N, Hamza I et al. Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 2010;9:460–471 [CrossRef]
    [Google Scholar]
  156. Philpott CC, Leidgens S, Frey AG. Metabolic remodeling in iron-deficient fungi. Biochim Biophys Acta 1823;2012:1509–1520
    [Google Scholar]
  157. Srivastava VK, Suneetha KJ, Kaur R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. FEBS J 2015;282:2142–2166 [CrossRef]
    [Google Scholar]
  158. Fukuda T, Kanki T. Mechanisms and physiological roles of mitophagy in yeast. Mol Cells 2018;41:35–44 [CrossRef]
    [Google Scholar]
  159. Conde e Silva N, Gonçalves IR, Lemaire M, Lesuisse E, Camadro JM et al. KlAft, the Kluyveromyces lactis ortholog of Aft1 and Aft2, mediates activation of iron-responsive transcription through the PuCACCC Aft-type sequence. Genetics 2009;183:93–106 [CrossRef]
    [Google Scholar]
  160. Gonçalves IR, Conde e Silva N, Garay CLT, Lesuisse E, Camadro JM et al. The basis for evolution of DNA-binding specificity of the Aft1 transcription factor in yeasts. Genetics 2014;196:149–160 [CrossRef]
    [Google Scholar]
  161. Chen C, Pande K, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 2011;10:118–135 [CrossRef]
    [Google Scholar]
  162. Pimentel C, Vicente C, Menezes RA, Caetano S, Carreto L et al. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PLoS One 2012;7:e37434 [CrossRef]
    [Google Scholar]
  163. Li L, Bagley D, Ward DM, Kaplan J. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 2008;28:1326–1337 [CrossRef]
    [Google Scholar]
  164. Tan K, Feizi H, Luo C, Fan SH, Ravasi T et al. A systems approach to delineate functions of paralogous transcription factors: role of the YAP family in the DNA damage response. Proc Natl Acad Sci U S A 2008;105:2934–2939 [CrossRef]
    [Google Scholar]
  165. Fernandes L, Rodrigues-Pousada C, Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 1997;17:6982–6993 [CrossRef]
    [Google Scholar]
  166. Li L, Jia X, Ward DM, Kaplan J. Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity. J Biol Chem 2011;286:38488–38497 [CrossRef]
    [Google Scholar]
  167. Li L, Miao R, Bertram S, Jia X, Ward DM et al. A role for iron-sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast. J Biol Chem 2012;287:35709–35721 [CrossRef]
    [Google Scholar]
  168. Rietzschel N, Pierik AJ, Bill E, Lill R, Mühlenhoff U. The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe-2S] clusters. Mol Cell Biol 2015;35:370–378 [CrossRef]
    [Google Scholar]
  169. Li L, Kaplan J, Ward DM. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast. J Biol Chem 2017;292:15577–15586 [CrossRef]
    [Google Scholar]
  170. Thiébaut A, Delaveau T, Benchouaia M, Boeri J, Garcia M et al. The CCAAT-binding complex controls respiratory gene expression and iron homeostasis in Candida glabrata. Sci Rep 2017;7:3531 [CrossRef]
    [Google Scholar]
  171. Merhej J, Delaveau T, Guitard J, Palancade B, Hennequin C et al. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Mol Microbiol 2015;96:951–972 [CrossRef]
    [Google Scholar]
  172. Forsburg SL, Guarente L. Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Annu Rev Cell Biol 1989;5:153–180 [CrossRef]
    [Google Scholar]
  173. McNabb DS, Pinto I. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell 2005;4:1829–1839 [CrossRef]
    [Google Scholar]
  174. McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 1995;9:47–58 [CrossRef]
    [Google Scholar]
  175. Lascaris R, Bussemaker HJ, Boorsma A, Piper M, van der Spek H et al. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol 2002;4:R3 [CrossRef]
    [Google Scholar]
  176. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 2006;7:113 [CrossRef]
    [Google Scholar]
  177. Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 2011;286:25154–25170 [CrossRef]
    [Google Scholar]
  178. Liang Y, Wei D, Wang H, Xu N, Zhang B et al. Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence. Microbiology 2010;156:2912–2919 [CrossRef]
    [Google Scholar]
  179. Wells ML, Washington OL, Hicks SN, Nobile CJ, Hartooni N et al. Post-transcriptional regulation of transcript abundance by a conserved member of the tristetraprolin family in Candida albicans. Mol Microbiol 2015;95:1036–1053 [CrossRef]
    [Google Scholar]
  180. Xu N, Cheng X, Yu Q, Qian K, Ding X et al. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans. PLoS One 2013;8:e62367 [CrossRef]
    [Google Scholar]
  181. Lan C-Y, Rodarte G, Murillo LA, Jones T, Davis RW et al. Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 2004;53:1451–1469 [CrossRef]
    [Google Scholar]
  182. Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 2008;70:27–43 [CrossRef]
    [Google Scholar]
  183. Voisard C, Wang J, McEvoy JL, Xu P, Leong SA. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 1993;13:7091–7100 [CrossRef]
    [Google Scholar]
  184. Haas H, Zadra I, Stöffler G, Angermayr K. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 1999;274:4613–4619 [CrossRef]
    [Google Scholar]
  185. Jung WH, Sham A, Lian T, Singh A, Kosman DJ et al. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog 2008;4:e45 [CrossRef]
    [Google Scholar]
  186. Pelletier B, Beaudoin J, Mukai Y, Labbé S. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 2002;277:22950–22958 [CrossRef]
    [Google Scholar]
  187. An Z, Mei B, Yuan WM, Leong SA. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 1997;16:1742–1750 [CrossRef]
    [Google Scholar]
  188. Chao LY, Marletta MA, Rine J. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry 2008;47:7274–7283 [CrossRef]
    [Google Scholar]
  189. Jbel M, Mercier A, Labbé S. Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot Cell 2011;10:629–645 [CrossRef]
    [Google Scholar]
  190. Encinar del Dedo J, Gabrielli N, Carmona M, Ayté J, Hidalgo E. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast. PLoS Genet 2015;11:e1005106 [CrossRef]
    [Google Scholar]
  191. Jbel M, Mercier A, Pelletier B, Beaudoin J, Labbé S. Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot Cell 2009;8:649–664 [CrossRef]
    [Google Scholar]
  192. Jacques J-F, Mercier A, Brault A, Mourer T, Labbé S. Fra2 is a co-regulator of Fep1 inhibition in response to iron starvation. PLoS One 2014;9:e98959 [CrossRef]
    [Google Scholar]
  193. Attarian R, Hu G, Sánchez-León E, Caza M, Croll D et al. The Monothiol Glutaredoxin Grx4 Regulates Iron Homeostasis and Virulence in Cryptococcus neoformans. MBio 2018;9:e02377-180412 2018; [CrossRef]
    [Google Scholar]
  194. Jung WH, Saikia S, Hu G, Wang J, Fung CK-Y et al. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog 2010;6:e1001209 [CrossRef]
    [Google Scholar]
  195. Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol 2006;4:e410 [CrossRef]
    [Google Scholar]
  196. Tanaka A, Kato M, Nagase T, Kobayashi T, Tsukagoshi N. Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species. Biochim Biophys Acta 2002;1576:176–182 [CrossRef]
    [Google Scholar]
  197. Hsu P-C, Yang C-Y, Lan C-Y. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell 2011;10:207–225 [CrossRef]
    [Google Scholar]
  198. López-Berges MS, Capilla J, Turrà D, Schafferer L, Matthijs S et al. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 2012;24:3805–3822 [CrossRef]
    [Google Scholar]
  199. Kröber A, Scherlach K, Hortschansky P, Shelest E, Staib P et al. HapX mediates iron homeostasis in the pathogenic dermatophyte Arthroderma benhamiae but is dispensable for virulence. PLoS One 2016;11:e0150701 [CrossRef]
    [Google Scholar]
  200. Mercier A, Pelletier B, Labbé S. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2006;5:1866–1881 [CrossRef]
    [Google Scholar]
  201. Wang Y, Deng C, Tian L, Xiong D, Tian C et al. The transcription factor VdHapX controls iron homeostasis and is crucial for virulence in the vascular pathogen Verticillium dahliae. mSphere 2018;3: [CrossRef]
    [Google Scholar]
  202. Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S et al. Interaction of HapX with the CCAAT-binding complex-a novel mechanism of gene regulation by iron. EMBO J 2007;26:3157–3168 [CrossRef]
    [Google Scholar]
  203. Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM et al. Fungal morphology, iron homeostasis, and lipid metabolism regulated by a GATA transcription factor in Blastomyces dermatitidis. PLoS Pathog 2015;11:e1004959 [CrossRef]
    [Google Scholar]
  204. Mercier A, Watt S, Bähler J, Labbé S. Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. Eukaryot Cell 2008;7:493–508 [CrossRef]
    [Google Scholar]
  205. Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 2010;6:e1001124 [CrossRef]
    [Google Scholar]
  206. Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K et al. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 2014;33:2261–2276 [CrossRef]
    [Google Scholar]
  207. Srivastav MK, Agarwal N, Natarajan K. Multiple evolutionarily conserved domains of cap2 are required for promoter recruitment and iron homeostasis gene regulation. mSphere 2018;3:e00370-180108 2018; [CrossRef]
    [Google Scholar]
  208. Hortschansky P, Ando E, Tuppatsch K, Arikawa H, Kobayashi T et al. Deciphering the combinatorial DNA-binding code of the CCAAT-binding complex and the iron-regulatory basic region leucine zipper (bZIP) transcription factor HapX. J Biol Chem 2015;290:6058–6070 [CrossRef]
    [Google Scholar]
  209. Skrahina V, Brock M, Hube B, Brunke S. Candida albicans Hap43 Domains Are Required under Iron Starvation but Not Excess. Front Microbiol 2017;8:2388 [CrossRef]
    [Google Scholar]
  210. Mercier A, Labbé S. Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin CRM1. J Biol Chem 2009;284:20249–20262 [CrossRef]
    [Google Scholar]
  211. Dlouhy AC, Beaudoin J, Labbé S, Outten CE. Schizosaccharomyces pombe Grx4 regulates the transcriptional repressor Php4 via [2Fe-2S] cluster binding. Metallomics 2017;9:1096–1105 [CrossRef]
    [Google Scholar]
  212. Vachon P, Mercier A, Jbel M, Labbé S. The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. Eukaryot Cell 2012;11:806–819 [CrossRef]
    [Google Scholar]
  213. Hwang LH, Seth E, Gilmore SA, Sil A. SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell 2012;11:16–25 [CrossRef]
    [Google Scholar]
  214. Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ et al. SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 2011;7:e1002374 [CrossRef]
    [Google Scholar]
  215. Long N, Orasch T, Zhang S, Gao L, Xu X et al. The Zn2Cys6-type transcription factor leuB cross-links regulation of leucine biosynthesis and iron acquisition in Aspergillus fumigatus. PLoS Genet 2018;14:e1007762 [CrossRef]
    [Google Scholar]
  216. Baker CR, Booth LN, Sorrells TR, Johnson AD. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 2012;151:80–95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000807
Loading
/content/journal/micro/10.1099/mic.0.000807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error