1887

Abstract

In the fight against antimicrobial resistance (AMR), antibiotic biosynthetic gene clusters are constantly being discovered. These clusters often include genes for membrane transporters that are involved in the export of the produced natural product during biosynthesis and/or subsequent resistance through active efflux. Despite transporter genes being integral parts of these clusters, study of the function of antibiotic export in natural producers such as spp. remains underexplored, in many cases lagging far behind our understanding of the biosynthetic enzymes. More efficient release of antibiotics by producing cells has potential benefits to industrial biotechnology and understanding the relationships between exporters in natural producers and resistance-associated efflux pumps in pathogens can inform our efforts to understand how AMR spreads. Herein we compile and critically assess the literature on the identification and characterization of antibiotic exporters and their contribution to production in natural antibiotic producers. We evaluate examples of how this knowledge could be used in biotechnology to increase yields of the final product or modulate its chemical nature. Finally, we consider the evidence that natural exporters form a reservoir of protein functions that could be hijacked by pathogens as efflux pumps and emphasize the need for much greater understanding of these exporters to fully exploit their potential for applications around human health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000794
2019-08-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/8/805.html?itemId=/content/journal/micro/10.1099/mic.0.000794&mimeType=html&fmt=ahah

References

  1. Carlet J, Pulcini C, Piddock LJ. Antibiotic resistance: a geopolitical issue. Clin Microbiol Infect 2014;20:949–953 [CrossRef][PubMed]
    [Google Scholar]
  2. Wells V, Piddock LJV. Addressing antimicrobial resistance in the UK and Europe. Lancet Infect Dis 2017;17:1230–1231 [CrossRef][PubMed]
    [Google Scholar]
  3. Cox JAG, Worthington T. The 'antibiotic apocalypse' - scaremongering or scientific reporting?. Trends Microbiol 2017;25:167–169 [CrossRef][PubMed]
    [Google Scholar]
  4. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. AntiSMASH 4.0 - improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45:W36–W41 [CrossRef]
    [Google Scholar]
  5. Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol 2013;31:922–927 [CrossRef][PubMed]
    [Google Scholar]
  6. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 2016;34:828–837 [CrossRef][PubMed]
    [Google Scholar]
  7. Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016;33:988–1005 [CrossRef][PubMed]
    [Google Scholar]
  8. Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci 2016;37:689–701 [CrossRef][PubMed]
    [Google Scholar]
  9. Li L, Jiang W, Lu Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 2017;35:936–949 [CrossRef][PubMed]
    [Google Scholar]
  10. Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018;153:24–34 [CrossRef][PubMed]
    [Google Scholar]
  11. Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 2017;41:19–33 [CrossRef][PubMed]
    [Google Scholar]
  12. Bartholomae M, Buivydas A, Viel JH, Montalbán-López M, Kuipers OP. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 2017;106:186–206 [CrossRef][PubMed]
    [Google Scholar]
  13. Reen FJ, Romano S, Dobson AD, O'Gara F. The sound of silence: activating silent biosynthetic gene clusters in Marine Microorganisms. Mar Drugs 2015;13:4754–4783 [CrossRef][PubMed]
    [Google Scholar]
  14. Mattern DJ, Valiante V, Unkles SE, Brakhage AA. Synthetic biology of fungal natural products. Front Microbiol 2015;6: [CrossRef][PubMed]
    [Google Scholar]
  15. Martín JF, Casqueiro J, Liras P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 2005;8:282–293 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu L, Hao T, Xie Z, Horsman GP, Chen Y. Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans. Sci Rep 2016;6:1 [CrossRef][PubMed]
    [Google Scholar]
  17. Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep 2015;7:1 [CrossRef]
    [Google Scholar]
  18. Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 2015;44:257–283 [CrossRef][PubMed]
    [Google Scholar]
  19. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 2016;4:14 [CrossRef][PubMed]
    [Google Scholar]
  20. Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces species. Front Microbiol 2017;8: [CrossRef][PubMed]
    [Google Scholar]
  21. Kell DB, Swainston N, Pir P, Oliver SG. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 2015;33:237–246 [CrossRef][PubMed]
    [Google Scholar]
  22. Lv H, Li J, Wu Y, Garyali S, Wang Y. Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 2016;100:6119–6130 [CrossRef][PubMed]
    [Google Scholar]
  23. Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 2016;7:1–14 [CrossRef][PubMed]
    [Google Scholar]
  24. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017;8:15784–15787 [CrossRef][PubMed]
    [Google Scholar]
  25. Laskaris P, Tolba S, Calvo-Bado L, Wellington EM, Wellington L. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 2010;12:783–796 [CrossRef][PubMed]
    [Google Scholar]
  26. Méndez C, Salas JA. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 2001;152:341–350 [CrossRef][PubMed]
    [Google Scholar]
  27. Gebhard S. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation. Mol Microbiol 2012;86:1295–1317 [CrossRef][PubMed]
    [Google Scholar]
  28. Mak S, Xu Y, Nodwell JR. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol 2014;93:391–402 [CrossRef][PubMed]
    [Google Scholar]
  29. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007;24:708 [CrossRef][PubMed]
    [Google Scholar]
  30. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013;30:108–160 [CrossRef][PubMed]
    [Google Scholar]
  31. Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev 2017;117:5457–5520 [CrossRef][PubMed]
    [Google Scholar]
  32. Sharkey LK, Edwards TA, O'Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 2016;7:1–10 [CrossRef][PubMed]
    [Google Scholar]
  33. Murina V, Kasari M, Takada H, Hinnu M, Saha CK et al. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J Mol Biol 2018; [CrossRef][PubMed]
    [Google Scholar]
  34. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C et al. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 2016;44:D372–D379 [CrossRef][PubMed]
    [Google Scholar]
  35. Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD et al. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 2004;279:22176–22182 [CrossRef][PubMed]
    [Google Scholar]
  36. van den Berg van Saparoea HB, Bakkes PJ, Moll GN, Driessen AJ. Distinct contributions of the nisin biosynthesis enzymes NisB and NisC and transporter NisT to prenisin production by Lactococcus lactis. Appl Environ Microbiol 2008;74:5541–5548 [CrossRef][PubMed]
    [Google Scholar]
  37. Nishie M, Shioya K, Nagao J, Jikuya H, Sonomoto K. ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. J Biosci Bioeng 2009;108:460–464 [CrossRef][PubMed]
    [Google Scholar]
  38. Nishie M, Sasaki M, Nagao J, Zendo T, Nakayama J et al. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 2011;286:11163–11169 [CrossRef][PubMed]
    [Google Scholar]
  39. Zheng S, Nagao JI, Nishie M, Zendo T, Sonomoto K. ATPase activity regulation by leader peptide processing of ABC transporter maturation and secretion protein, NukT, for lantibiotic nukacin ISK-1. Appl Microbiol Biotechnol 2018;102:763–772 [CrossRef][PubMed]
    [Google Scholar]
  40. Lin DY, Huang S, Chen J. Crystal structures of a polypeptide processing and secretion transporter. Nature 2015;523:425–430 [CrossRef][PubMed]
    [Google Scholar]
  41. Clemens R, Zaschke-Kriesche J, Khosa S, Smits SHJ. Insight into two ABC transporter families involved in lantibiotic resistance. Front Mol Biosci 2017;4:1 [CrossRef][PubMed]
    [Google Scholar]
  42. Sletta H, Borgos SE, Bruheim P, Sekurova ON, Grasdalen H et al. Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob Agents Chemother 2005;49:4576–4583 [CrossRef][PubMed]
    [Google Scholar]
  43. Solbiati JO, Ciaccio M, Farías RN, José E, Moreno F et al. Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25 sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. 1999;1812659–2662
  44. Bountra K, Hagelueken G, Choudhury HG, Corradi V, El Omari K et al. Structural basis for antibacterial peptide self‐immunity by the bacterial ABC transporter McjD. EMBO J 2017;e201797278
    [Google Scholar]
  45. Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 2014;111:9145–9150 [CrossRef]
    [Google Scholar]
  46. Solbiati JO, Ciaccio M, Farías RN, Salomón RA. Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 1996;178:3661–3663 [CrossRef][PubMed]
    [Google Scholar]
  47. Romano M, Fusco G, Choudhury HG, Mehmood S, Robinson CV et al. Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem Biol 2018;13:1598–1609 [CrossRef][PubMed]
    [Google Scholar]
  48. Petković H, Cullum J, Hranueli D, Hunter IS, Perić-Concha N et al. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 2006;70:704–728 [CrossRef][PubMed]
    [Google Scholar]
  49. Salah-Bey K, Thompson CJ. Unusual regulatory mechanism for a Streptomyces multidrug resistance gene, ptr, involving three homologous protein-binding sites overlapping the promoter region. Mol Microbiol 1995;17:1109–1119 [CrossRef][PubMed]
    [Google Scholar]
  50. Mast Y, Weber T, Gölz M, Ort-Winklbauer R, Gondran A et al. Characterization of the 'pristinamycin supercluster' of Streptomyces pristinaespiralis. Microb Biotechnol 2011;4:192–206 [CrossRef][PubMed]
    [Google Scholar]
  51. Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci USA 1991;88:8553–8557 [CrossRef][PubMed]
    [Google Scholar]
  52. Kaur P. Expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP binding expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP bindi. 1997;179569–575
  53. Srinivasan P, Palani SN, Prasad R. Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS Microbiol Lett 2010;305:18–27 [CrossRef]
    [Google Scholar]
  54. Prija F, Prasad R. DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 2017;202:30–30–35 [CrossRef][PubMed]
    [Google Scholar]
  55. Menéndez N, Braña AF, Salas JA, Méndez C. Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 2007;153:3061–3070 [CrossRef][PubMed]
    [Google Scholar]
  56. Fernández E, Lombó F, Méndez C, Salas JA. An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol Gen Genet 1996;251:692–698[PubMed]
    [Google Scholar]
  57. Petković H, Lukežič T, Šušković J. Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics. Food Technol Biotechnol 2017;55:3–13 [CrossRef][PubMed]
    [Google Scholar]
  58. Ohnuki T, Katoh T, Imanaka T, Aiba S. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J Bacteriol 1985;161:1010–1016[PubMed]
    [Google Scholar]
  59. Reynes JP, Calmels T, Drocourt D, Tiraby G. Cloning, expression in Escherichia coli and nucleotide sequence of a tetracycline-resistance gene from Streptomyces rimosus. J Gen Microbiol 1988;134:585–598 [CrossRef][PubMed]
    [Google Scholar]
  60. Chu X, Zhen Z, Tang Z. Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus. J Bioprocess Biotech 2012;02:3–6 [CrossRef]
    [Google Scholar]
  61. Yin S, Wang X, Shi M, Yuan F, Wang H et al. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 2017;60:992–999 [CrossRef][PubMed]
    [Google Scholar]
  62. Lee CK, Kamitani Y, Nihira T, Yamada Y. Identification and in vivo functional analysis of a virginiamycin S resistance gene (varS) from Streptomyces virginiae. J Bacteriol 1999;181:3293–3297[PubMed]
    [Google Scholar]
  63. Xu Y, Willems A, Au-Yeung C, Tahlan K, Nodwell JR. A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. mBio 2012;3:1–11 [CrossRef][PubMed]
    [Google Scholar]
  64. Tahlan K, Ahn SK, Sing A, Bodnaruk TD, Willems AR et al. Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 2007;63:951–961 [CrossRef][PubMed]
    [Google Scholar]
  65. Kim YJ, Song JY, Hong SK, Smith CP, Chang YK. Effects of pH shock on the secretion system in Streptomyces coelicolor A3(2). J Microbiol Biotechnol 2008;18:658–662[PubMed]
    [Google Scholar]
  66. Bystrykh LV, Fernández-Moreno MA, Herrema JK, Malpartida F, Hopwood DA et al. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J Bacteriol 1996;178:2238–2244 [CrossRef][PubMed]
    [Google Scholar]
  67. Sherwood EJ, Bibb MJ. The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 2013;110:E2500E2509 [CrossRef][PubMed]
    [Google Scholar]
  68. Foulston L, Bibb M. Feed-forward regulation of microbisporicin biosynthesis in Microbispora corallina. J Bacteriol 2011;193:3064–3071 [CrossRef][PubMed]
    [Google Scholar]
  69. Sherwood EJ, Hesketh AR, Bibb MJ. Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba. J Bacteriol 2013;195:2309–2321 [CrossRef][PubMed]
    [Google Scholar]
  70. Foulston LC, Bibb MJ. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA 2010;107:13461–13466 [CrossRef][PubMed]
    [Google Scholar]
  71. Wei J, Tian Y, Niu G, Tan H. GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus. Appl Environ Microbiol 2014;80:714–722 [CrossRef][PubMed]
    [Google Scholar]
  72. Le Tbk FHP, den Hengst CD, Ahn SK, Maxwell A, Buttner MJ. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol 2009;72:1462–1474
    [Google Scholar]
  73. Huo L, Rachid S, Stadler M, Wenzel SC, Mu R. Article synthetic biotechnology to study and engineer ribosomal bottromycin. Biosynthesis 2012;1278–1287
    [Google Scholar]
  74. Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L et al. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 2011;92:337–345 [CrossRef]
    [Google Scholar]
  75. Ostash I, Ostash B, Walker S, Fedorenko V. Proton-dependent transporter gene lndJ confers resistance to landomycin E in Streptomyces globisporus. Genetika 2007;43:1032–1037[PubMed]
    [Google Scholar]
  76. Ostash I, Rebets Y, Ostash B, Kobylyanskyy A, Myronovskyy M et al. An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 2008;190:105–109 [CrossRef][PubMed]
    [Google Scholar]
  77. Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014;43:93–117 [CrossRef][PubMed]
    [Google Scholar]
  78. Blanc V, Salah-Bey K, Folcher M, Thompson CJ. Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol Microbiol 1995;17:989–999 [CrossRef][PubMed]
    [Google Scholar]
  79. Ostash B, Doud E, Walker S. ABC transporter genes from Streptomyces ghanaensis moenomycin biosynthetic gene cluster: roles in antibiotic production and export. Arch Microbiol 2012;194:915–922 [CrossRef][PubMed]
    [Google Scholar]
  80. Bennallack PR, Burt SR, Heder MJ, Robison RA, Griffitts JS. Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. J Bacteriol 2014;196:4344–4350 [CrossRef][PubMed]
    [Google Scholar]
  81. Thomas GH. Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2016;44:760–765 [CrossRef][PubMed]
    [Google Scholar]
  82. Sushida H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V et al. Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT. J Biosci Bioeng 2018;126:23–29 [CrossRef][PubMed]
    [Google Scholar]
  83. Ishibashi N, Himeno K, Masuda Y, Perez RH, Iwatani S et al. Gene cluster responsible for secretion of and immunity to multiple bacteriocins, the NKR-5-3 enterocins. Appl Environ Microbiol 2014;80:6647–6655 [CrossRef][PubMed]
    [Google Scholar]
  84. Bobeica SC, Dong SH, Huo L, Mazo N, McLaughlin MI et al. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife 2019;8:1–27 [CrossRef][PubMed]
    [Google Scholar]
  85. Bamas-Jacques N, Lorenzon S, Lacroix P, De Swetschin C, Crouzet J. Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J Appl Microbiol 1999;87:939–948
    [Google Scholar]
  86. Folcher M, Morris RP, Dale G, Salah-Bey-Hocini K, Viollier PH et al. A transcriptional regulator of a pristinamycin resistance gene in Streptomyces coelicolor. J Biol Chem 2001;276:1479–1485 [CrossRef][PubMed]
    [Google Scholar]
  87. McNicholas S, Potterton E, Wilson KS, Noble ME. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 2011;67:386–394 [CrossRef][PubMed]
    [Google Scholar]
  88. Stein T, Heinzmann S, Solovieva I, Entian KD. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 2003;278:89–94 [CrossRef][PubMed]
    [Google Scholar]
  89. Garrido MC, Herrero M, Kolter R, Moreno F. The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. EMBO J 1988;7:1853–1862 [CrossRef][PubMed]
    [Google Scholar]
  90. Metelev M, Serebryakova M, Ghilarov D, Zhao Y, Severinov K. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 2013;195:4129–4137 [CrossRef][PubMed]
    [Google Scholar]
  91. Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Yakimov A et al. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 2017;13:1129–1136 [CrossRef][PubMed]
    [Google Scholar]
  92. Widdick DA, Dodd HM, Barraille P, White J, Stein TH et al. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci USA 2003;100:4316–4321 [CrossRef][PubMed]
    [Google Scholar]
  93. Menges R, Muth G, Wohlleben W, Stegmann E. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin. Appl Microbiol Biotechnol 2007;77:125–134 [CrossRef][PubMed]
    [Google Scholar]
  94. Saleh O, Flinspach K, Westrich L, Kulik A, Gust B et al. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 2012;8:501–513 [CrossRef][PubMed]
    [Google Scholar]
  95. Rodríguez AM, Olano C, Vilches C, Méndez C, Salas JA. Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol Microbiol 1993;8:571–582 [CrossRef][PubMed]
    [Google Scholar]
  96. Olano C, Rodriguez AM, Méndez C, Salas JA. Topological studies of the membrane component of the OleC ABC transporter involved in oleandomycin resistance in Streptomyces antibioticus. FEMS Microbiol Lett 1996;143:133–139 [CrossRef][PubMed]
    [Google Scholar]
  97. Huang X, Yan A, Zhang X, Xu Y. Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 2006;376:68–78 [CrossRef][PubMed]
    [Google Scholar]
  98. Brodhagen M, Paulsen I, Loper JE. Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2005;71:6900–6909 [CrossRef][PubMed]
    [Google Scholar]
  99. Schmutz E, Mühlenweg A, Li SM, Heide L. Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin. Antimicrob Agents Chemother 2003;47:869–877 [CrossRef][PubMed]
    [Google Scholar]
  100. Eustáquio AS, Gust B, Galm U, Chater KF, Heide L et al. Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 2005;71:2452–2459
    [Google Scholar]
  101. Fomenko DE, Metlitskaya AZ, Péduzzi J, Goulard C, Katrukha GS et al. Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob Agents Chemother 2003;47:2868–2874[PubMed]
    [Google Scholar]
  102. Kinscherf TG, Willis DK. The biosynthetic gene cluster for the beta-lactam antibiotic tabtoxin in Pseudomonas syringae. J Antibiot 2005;58:817–821 [CrossRef][PubMed]
    [Google Scholar]
  103. Ostash I, Ostash B, Luzhetskyy A, Bechthold A, Walker S et al. Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 2008;285:195–202 [CrossRef][PubMed]
    [Google Scholar]
  104. Tu J, Li S, Chen J, Song Y, Fu S et al. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802. Microb Cell Fact 2018;17:28 [CrossRef][PubMed]
    [Google Scholar]
  105. Namwat W, Lee CK, Kinoshita H, Yamada Y, Nihira T. Identification of the varR gene as a transcriptional regulator of virginiamycin S resistance in Streptomyces virginiae. J Bacteriol 2001;183:2025–2031 [CrossRef][PubMed]
    [Google Scholar]
  106. Abbas A, McGuire JE, Crowley D, Baysse C, Dow M et al. The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. Microbiology 2004;150:2443–2450 [CrossRef][PubMed]
    [Google Scholar]
  107. Dhote V, Starosta AL, Wilson DN, Reynolds KA. The final step of hygromycin A biosynthesis, oxidation of C-5''-dihydrohygromycin A, is linked to a putative proton gradient-dependent efflux. Antimicrob Agents Chemother 2009;53:5163–5172 [CrossRef][PubMed]
    [Google Scholar]
  108. Guilfoile PG, Hutchinson CR. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 1992;174:3651–3658 [CrossRef][PubMed]
    [Google Scholar]
  109. Chater KF, Bruton CJ. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 1985;4:1893–1897 [CrossRef][PubMed]
    [Google Scholar]
  110. Neal RJ, Chater KF. Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Gene 1987;58:229–241 [CrossRef][PubMed]
    [Google Scholar]
  111. Thaker MN, García M, Koteva K, Waglechner N, Sorensen D et al. Biosynthetic gene cluster and antimicrobial activity of the elfamycin antibiotic factumycin. Medchemcomm 2012;3:1020–1026 [CrossRef]
    [Google Scholar]
  112. Zhang HZ, Schmidt H, Piepersberg W. Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Mol Microbiol 1992;6:2147–2157 [CrossRef][PubMed]
    [Google Scholar]
  113. Peschke U, Schmidt H, Zhang HZ, Piepersberg W. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 1995;16:1137–1156 [CrossRef][PubMed]
    [Google Scholar]
  114. Sheldon PJ, Mao Y, He M, Sherman DH. Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 1999;181:2507–2512[PubMed]
    [Google Scholar]
  115. Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 1999;6:251–263 [CrossRef][PubMed]
    [Google Scholar]
  116. Tercero JA, Espinosa JC, Lacalle RA, Jiménez A. The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 1996;271:1579–1590 [CrossRef][PubMed]
    [Google Scholar]
  117. Tercero JA, Lacalle RA, Jimenez A. The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. Eur J Biochem 1993;218:963–971 [CrossRef][PubMed]
    [Google Scholar]
  118. Du D, Zhu Y, Wei J, Tian Y, Niu G et al. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 2013;97:6383–6396 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000794
Loading
/content/journal/micro/10.1099/mic.0.000794
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error