1887

Abstract

Members of the Gram-negative bacterial genus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm . All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl--stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000790
2019-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/5/516.html?itemId=/content/journal/micro/10.1099/mic.0.000790&mimeType=html&fmt=ahah

References

  1. Shen T, Wang XN, Lou HX. Natural stilbenes: an overview. Nat Prod Rep 2009;26:916 [CrossRef][PubMed]
    [Google Scholar]
  2. Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology: Isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp. J Chem Ecol 1981;7:589–597 [CrossRef][PubMed]
    [Google Scholar]
  3. Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 2012;54:410–417 [CrossRef][PubMed]
    [Google Scholar]
  4. Waterfield NR, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annu Rev Microbiol 2009;63:557–574 [CrossRef][PubMed]
    [Google Scholar]
  5. Ciche TA, Ensign JC. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out?. Appl Environ Microbiol 2003;69:1890–1897 [CrossRef][PubMed]
    [Google Scholar]
  6. Daborn PJ, Waterfield N, Blight MA, Ffrench-Constant RH. Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J Bacteriol 2001;183:5834–5839 [CrossRef][PubMed]
    [Google Scholar]
  7. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 2002;68:3780–3789 [CrossRef]
    [Google Scholar]
  8. Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L et al. The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 2002;214:241–249 [CrossRef][PubMed]
    [Google Scholar]
  9. Joyce SA, Brachmann AO, Glazer I, Lango L, Schwär G et al. Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed Engl 2008;47:1942–1945 [CrossRef][PubMed]
    [Google Scholar]
  10. Li J, Chen G, Wu H, Webster JM. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 1995;61:4329–4333[PubMed]
    [Google Scholar]
  11. Shi D, An R, Zhang W, Zhang G, Yu Z. Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. J Agric Food Chem 2017;65:60–65 [CrossRef][PubMed]
    [Google Scholar]
  12. Kumar SN, Nambisan B, Kumar BSD, Vasudevan NG, Mohandas C et al. Antioxidant and anticancer activity of 3,5-dihydroxy-4-isopropylstilbene produced by Bacillus sp. N strain isolated from entomopathogenic nematode. Arch Pharm Res 2013;3:1–11
    [Google Scholar]
  13. Smith SH, Jayawickreme C, Rickard DJ, Nicodeme E, Bui T et al. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J Invest Dermatol 2017;137:2110–2119 [CrossRef][PubMed]
    [Google Scholar]
  14. Richardson WH, Schmidt TM, Nealson KH. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 1988;54:1602–1605[PubMed]
    [Google Scholar]
  15. Mulley G, Beeton ML, Wilkinson P, Vlisidou I, Ockendon-Powell N et al. From insect to man: Photorhabdus sheds light on the emergence of human pathogenicity. PLoS One 2015;10:e0144937 [CrossRef][PubMed]
    [Google Scholar]
  16. Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M et al. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016;17:1–11 [CrossRef][PubMed]
    [Google Scholar]
  17. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW et al. An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 2007;104:2419–2424 [CrossRef][PubMed]
    [Google Scholar]
  18. Lango-Scholey L, Brachmann AO, Bode HB, Clarke DJ. The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation. PLoS One 2013;8:e82152 [CrossRef][PubMed]
    [Google Scholar]
  19. Bager R, Roghanian M, Gerdes K, Clarke DJ. Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Mol Microbiol 2016;100:735–747 [CrossRef][PubMed]
    [Google Scholar]
  20. Krin E, Derzelle S, Bedard K, Adib-Conquy M, Turlin E et al. Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth inside the insect. Environ Microbiol 2008;10:1118–1134 [CrossRef][PubMed]
    [Google Scholar]
  21. Kontnik R, Crawford JM, Clardy J. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem Biol 2010;5:659–665 [CrossRef][PubMed]
    [Google Scholar]
  22. Langer A, Moldovan A, Harmath C, Joyce SA, Clarke DJ et al. HexA is a versatile regulator involved in the control of phenotypic heterogeneity of Photorhabdus luminescens. PLoS One 2017;12:e0176535 [CrossRef][PubMed]
    [Google Scholar]
  23. Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N et al. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environ Microbiol 2017;19:119–129 [CrossRef][PubMed]
    [Google Scholar]
  24. Hu K, Webster JM. Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-Heterorhabditis infected Galleria mellonella larvae. FEMS Microbiol Lett 2000;189:219–223 [CrossRef][PubMed]
    [Google Scholar]
  25. Hu K et al. Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology 1999;1:457–469
    [Google Scholar]
  26. Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J et al. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. J Biol Chem 2017;292:6680–6694 [CrossRef][PubMed]
    [Google Scholar]
  27. Williams JS, Thomas M, Clarke DJ. The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Microbiology 2005;151:2543–2550 [CrossRef][PubMed]
    [Google Scholar]
  28. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 2008;74:2275–2287 [CrossRef][PubMed]
    [Google Scholar]
  29. Lango L, Clarke DJ. A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens. Mol Microbiol 2010;77:1394–1405 [CrossRef][PubMed]
    [Google Scholar]
  30. Ruisheng A, Grewal PS. purL gene expression affects biofilm formation and symbiotic persistence of Photorhabdus temperata in the nematode Heterorhabditis bacteriophora. Microbiology 2011;157:2595–2603 [CrossRef][PubMed]
    [Google Scholar]
  31. Zamora-Lagos MA, Eckstein S, Langer A, Gazanis A, Pfeiffer F et al. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. BMC Genomics 2018;19:854 [CrossRef][PubMed]
    [Google Scholar]
  32. Hermansen GMM, Sazinas P, Kofod D, Millard A, Andersen PS et al. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression. FEMS Microbiol Lett 2018;365:1–9 [CrossRef][PubMed]
    [Google Scholar]
  33. Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA. Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res 2017;45:793–804 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhong J, Xiao C, Gu W, Du G, Sun X et al. Transfer RNAs mediate the rapid adaptation of Escherichia coli to oxidative stress. PLoS Genet 2015;11:e10053021005324 [CrossRef][PubMed]
    [Google Scholar]
  35. Brachmann AO, Joyce SA, Jenke-Kodama H, Schwär G, Clarke DJ et al. A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Chembiochem 2007;8:1721–1728 [CrossRef][PubMed]
    [Google Scholar]
  36. Gaudriault S, Duchaud E, Lanois A, Canoy AS, Bourot S et al. Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. J Bacteriol 2006;188:809–814 [CrossRef][PubMed]
    [Google Scholar]
  37. Crawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT. Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis. Chem Biol 2011;18:1102–1112 [CrossRef][PubMed]
    [Google Scholar]
  38. Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 2015;197:1146–1156 [CrossRef][PubMed]
    [Google Scholar]
  39. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 2015;13:298–309 [CrossRef][PubMed]
    [Google Scholar]
  40. Raskin DM, Judson N, Mekalanos JJ. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc Natl Acad Sci USA 2007;104:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  41. Jiang M, Sullivan SM, Wout PK, Maddock JR. G-protein control of the ribosome-associated stress response protein SpoT. J Bacteriol 2007;189:6140–6147 [CrossRef][PubMed]
    [Google Scholar]
  42. Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol 2010;20:69–74 [CrossRef][PubMed]
    [Google Scholar]
  43. Watson RJ, Joyce SA, Spencer GV, Clarke DJ. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Mol Microbiol 2005;56:763–773 [CrossRef][PubMed]
    [Google Scholar]
  44. Watson RJ, Millichap P, Joyce SA, Reynolds S, Clarke DJ. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. BMC Microbiol 2010;10:177 [CrossRef][PubMed]
    [Google Scholar]
  45. Blair JM, Piddock LJ. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol 2009;12:512–519 [CrossRef][PubMed]
    [Google Scholar]
  46. Bennett HP, Clarke DJ. The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. J Bacteriol 2005;187:77–84 [CrossRef][PubMed]
    [Google Scholar]
  47. Easom CA, Joyce SA, Clarke DJ. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol 2010;10:45 [CrossRef][PubMed]
    [Google Scholar]
  48. Brameyer S, Kresovic D, Bode HB, Heermann R. LuxR solos in Photorhabdus species. Front Cell Infect Microbiol 2014;4: [CrossRef][PubMed]
    [Google Scholar]
  49. Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J. Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 2012;109:10821–10826 [CrossRef][PubMed]
    [Google Scholar]
  50. Boemare NE, Akhurst RJ. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). Microbiology 1988;134:751–761 [CrossRef]
    [Google Scholar]
  51. Joyce SA, Clarke DJ. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 2003;47:1445–1457[PubMed]
    [Google Scholar]
  52. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ et al. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 2012;337:88–93 [CrossRef][PubMed]
    [Google Scholar]
  53. Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 2010;77:1021–38 [CrossRef][PubMed]
    [Google Scholar]
  54. Heinrich AK, Glaeser A, Tobias NJ, Heermann R, Bode HB. Heterogeneous regulation of bacterial natural product biosynthesis via a novel transcription factor. Heliyon 2016;2:e00197 [CrossRef][PubMed]
    [Google Scholar]
  55. Brameyer S, Kresovic D, Bode HB, Heermann R. Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci USA 2015;112:572–577 [CrossRef][PubMed]
    [Google Scholar]
  56. Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y et al. Pyrones as bacterial signaling molecules. Nat Chem Biol 2013;9:573–578 [CrossRef][PubMed]
    [Google Scholar]
  57. Turlin E, Pascal G, Rousselle JC, Lenormand P, Ngo S et al. Proteome analysis of the phenotypic variation process in Photorhabdus luminescens. Proteomics 2006;6:2705–2725 [CrossRef][PubMed]
    [Google Scholar]
  58. An R, Grewal PS. Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS One 2010;5:e13154 [CrossRef][PubMed]
    [Google Scholar]
  59. Easom CA, Clarke DJ. HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Environ Microbiol 2012;14:953–966 [CrossRef][PubMed]
    [Google Scholar]
  60. Lewis GN, Magel TT, Lipkin D. The absorption and re-emission of light by cis- and trans-stilbenes and the efficiency of their photochemical isomerization. J Am Chem Soc 1940;62:2973–2980 [CrossRef]
    [Google Scholar]
  61. Figueiras TS, Neves-Petersen MT, Petersen SB. Activation energy of light induced isomerization of resveratrol. J Fluoresc 2011;21:1897–1906 [CrossRef][PubMed]
    [Google Scholar]
  62. Yim G, Wang HH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 2007;362:1195–1200 [CrossRef][PubMed]
    [Google Scholar]
  63. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM et al. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 2005;102:309–314 [CrossRef][PubMed]
    [Google Scholar]
  64. Wang Y, Kern SE, Newman DK. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 2010;192:365–369 [CrossRef][PubMed]
    [Google Scholar]
  65. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006;61:1308–1321 [CrossRef][PubMed]
    [Google Scholar]
  66. Jones RT, Sanchez-Contreras M, Vlisidou I, Amos MR, Yang G et al. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment. BMC Microbiol 2010;10:141 [CrossRef][PubMed]
    [Google Scholar]
  67. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006;93:491–507 [CrossRef]
    [Google Scholar]
  68. Lane DJ. 16S/23S rRNA Sequencing. Nucleic acid techniques in bacterial systematics. 1991;115–175
  69. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 2003;21:1307–1313 [CrossRef][PubMed]
    [Google Scholar]
  70. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  71. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009;25:2071–2073 [CrossRef][PubMed]
    [Google Scholar]
  72. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  73. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  74. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550 [CrossRef][PubMed]
    [Google Scholar]
  75. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–842 [CrossRef][PubMed]
    [Google Scholar]
  76. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  77. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG et al. ACT: The Artemis Comparison Tool. Bioinformatics 2005;21:3422–3423 [CrossRef][PubMed]
    [Google Scholar]
  78. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017;45:D362–D368 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000790
Loading
/content/journal/micro/10.1099/mic.0.000790
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error