1887

Abstract

Assessing bacterial contamination in environmental samples is critical in determining threats to public health. The classical methods are time-consuming and only recognize species that grow easily on culture media. Viable but non-culturable (VBNC) bacteria are a possible threat that may resuscitate and cause infections. Recent dye-based screening techniques employ nucleic acid dyes such as ethidium monoazide (EMA) and propidium monoazide (PMA), along with many fluorescent dyes, which are an effective alternative for viability assessment. The measurement of cellular metabolism, heat flow and ATP production has also been widely applied in detection approaches. In addition, RNA-based detection methods, including nucleic acid sequence-based amplification (NASBA), have been applied for bacterial pathogen determination. Stable isotope probing using C, N and O, which are mobilized by microbes, can also be used for effective viability assessment. Future detection tools, such as microarrays, BioNEMS and BioMEMS, which are currently being validated, might offer better microbial viability detection.

Keyword(s): Membrane integrity , MVT , VBNC , Viability and vPCR
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000786
2019-03-07
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/6/593.html?itemId=/content/journal/micro/10.1099/mic.0.000786&mimeType=html&fmt=ahah

References

  1. Keer JT, Birch L. Molecular methods for the assessment of bacterial viability. J Microbiol Methods 2003;53:175–183 [CrossRef][PubMed]
    [Google Scholar]
  2. Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and challenges in viability detection of foodborne pathogens. Front Microbiol 2016;7:1–12 [CrossRef][PubMed]
    [Google Scholar]
  3. Oliver JD. The viable but nonculturable state in bacteria. J Microbiol 2005;43 Spec No:93–100[PubMed]
    [Google Scholar]
  4. Davey HM. Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 2011;77:5571–5576 [CrossRef][PubMed]
    [Google Scholar]
  5. Amano F. Differential resuscitative effects of pyruvate and its analogs on vbnc (viable but nonculturable) Salmonella. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria Hoboken, NJ, USA: Wiley-Blackwell; 2016
    [Google Scholar]
  6. Makino SI, Kii T, Asakura H, Shirahata T, Ikeda T et al. Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but nonculturable state in salted salmon roe?. Appl Environ Microbiol 2000;66:5536–5539 [CrossRef][PubMed]
    [Google Scholar]
  7. Asakura H, Makino S, Takagi T, Kuri A, Kurazono T et al. Passage in mice causes a change in the ability of Salmonella enterica serovar Oranienburg to survive NaCl osmotic stress: resuscitation from the viable but non-culturable state. FEMS Microbiol Lett 2002;212:87–93 [CrossRef][PubMed]
    [Google Scholar]
  8. Robben C, Fister S, Witte AK, Schoder D, Rossmanith P et al. Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts. Sci Rep 2018;8:15132 [CrossRef][PubMed]
    [Google Scholar]
  9. Fusco V, Quero GM. Culture-dependent and culture-independent nucleic-acid-based methods used in the microbial safety assessment of milk and dairy products. Compr Rev Food Sci Food Saf 2014;13:493–537 [CrossRef]
    [Google Scholar]
  10. Edmondson DG, Hu B, Norris SJ. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. Pallidum 2018;9:1–18
    [Google Scholar]
  11. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 2010;43:1–7 [CrossRef]
    [Google Scholar]
  12. Laupland KB, Valiquette L. The changing culture of the microbiology laboratory. Can J Infect Dis Med Microbiol 2013;24:125–128 [CrossRef][PubMed]
    [Google Scholar]
  13. Vondrakova L, Pazlarova J, Demnerova K. Identification and quantification of Campylobacter jejuni, coli and lari in food matrices all at once using multiplex qPCR. Gut Pathog 2014;6:12–19 [CrossRef][PubMed]
    [Google Scholar]
  14. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2014;2: [CrossRef][PubMed]
    [Google Scholar]
  15. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ et al. Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microb Ecol 1982;8:313–323 [CrossRef][PubMed]
    [Google Scholar]
  16. Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H et al. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. Water Res 2018;141:428–438 [CrossRef][PubMed]
    [Google Scholar]
  17. Oh E, McMullen L, Jeon B. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front Microbiol 2015;6: [CrossRef][PubMed]
    [Google Scholar]
  18. Wu B, Liang W, Kan B. Growth phase, oxygen, temperature, and starvation affect the development of viable but non-culturable state of Vibrio cholerae. Front Microbiol 2016;7: [CrossRef][PubMed]
    [Google Scholar]
  19. Zhao X, Zhong J, Wei C, Lin C-W, Ding T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 2017;8: [CrossRef]
    [Google Scholar]
  20. Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010;34:415–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Sachidanandham R, Yew-Hoong Gin K. A dormancy state in nonspore-forming bacteria. Appl Microbiol Biotechnol 2009;81:927–941 [CrossRef][PubMed]
    [Google Scholar]
  22. Ayrapetyan M, Williams TC, Oliver JD. Resuscitation of vibrios from the viable but nonculturable state is induced by quorum-sensing molecules. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria Hoboken NJ, USA: Wiley-Blackwell; 2016
    [Google Scholar]
  23. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014;5: [CrossRef]
    [Google Scholar]
  24. Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011;65:189–213 [CrossRef][PubMed]
    [Google Scholar]
  25. Trigui H, Dudyk P, Oh J, Hong JI, Faucher SP. A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in water. Appl Environ Microbiol 2015;81:918–928 [CrossRef][PubMed]
    [Google Scholar]
  26. Potrykus K, Cashel M. (p)ppGpp: still magical?. Annu Rev Microbiol 2008;62:35–51 [CrossRef][PubMed]
    [Google Scholar]
  27. Christman MF, Morgan RW, Jacobson FS, Ames BN. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985;41:753–762 [CrossRef][PubMed]
    [Google Scholar]
  28. Desnues B, Cuny C, Grégori G, Dukan S, Aguilaniu H et al. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 2003;4:400–404 [CrossRef][PubMed]
    [Google Scholar]
  29. Wang HW, Chung CH, Ma TY, Wong HC. Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Appl Environ Microbiol 2013;79:3734–3743 [CrossRef][PubMed]
    [Google Scholar]
  30. Abe A, Ohashi E, Ren H, Hayashi T, Endo H. Isolation and characterization of a cold-induced nonculturable suppression mutant of Vibrio vulnificus. Microbiol Res 2007;162:130–138 [CrossRef][PubMed]
    [Google Scholar]
  31. Charoenlap N, Eiamphungporn W, Chauvatcharin N, Utamapongchai S, Vattanaviboon P et al. OxyR mediated compensatory expression between ahpC and katA and the significance of ahpC in protection from hydrogen peroxide in Xanthomonas campestris. FEMS Microbiol Lett 2005;249:73–78 [CrossRef][PubMed]
    [Google Scholar]
  32. Longkumer T, Parthasarathy S, Vemuri SG, Siddavattam D. OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides. Microbiology 2014;160:102–112 [CrossRef][PubMed]
    [Google Scholar]
  33. Zeng B, Zhao G, Cao X, Yang Z, Wang C et al. Formation and resuscitation of viable but nonculturable Salmonella typhi. Biomed Res Int 2013;2013:1–7 [CrossRef][PubMed]
    [Google Scholar]
  34. Roszak DB, Grimes DJ, Colwell RR. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 1984;30:334–338 [CrossRef][PubMed]
    [Google Scholar]
  35. Downing KJ, Mischenko VV, Shleeva MO, Young DI, Young M et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect Immun 2005;73:3038–3043 [CrossRef][PubMed]
    [Google Scholar]
  36. Morishige Y, Koike A, Tamura-Ueyama A, Amano F. Induction of viable but nonculturable salmonella in exponentially grown cells by exposure to a low-humidity environment and their resuscitation by catalase. J Food Prot 2017;80:288–294 [CrossRef][PubMed]
    [Google Scholar]
  37. Pinto D, Almeida V, Almeida Santos M, Chambel L. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol 2011;110:1601–1611 [CrossRef][PubMed]
    [Google Scholar]
  38. Trinh NT, Dumas E, Thanh ML, Degraeve P, Ben Amara C et al. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua. Can J Microbiol 2015;61:263–271 [CrossRef][PubMed]
    [Google Scholar]
  39. Cappelier JM, Besnard V, Roche SM, Velge P, Federighi M. Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Vet Res 2007;38:573–583 [CrossRef][PubMed]
    [Google Scholar]
  40. Sträuber H, Müller S. Viability states of bacteria-specific mechanisms of selected probes. Cytometry A 2010;77:623–634 [CrossRef][PubMed]
    [Google Scholar]
  41. Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA et al. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017;5:86 [CrossRef][PubMed]
    [Google Scholar]
  42. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 2015;15:36 [CrossRef][PubMed]
    [Google Scholar]
  43. Wiederschain GY. The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies. Biochemistry 2011;76:1276
    [Google Scholar]
  44. Hiraoka Y, Kimbara K. Rapid assessment of the physiological status of the polychlorinated biphenyl degrader Comamonas testosteroni TK102 by flow cytometry. Appl Environ Microbiol 2002;68:2031–2035 [CrossRef][PubMed]
    [Google Scholar]
  45. Sträuber H, Müller S. Viability states of bacteria-specific mechanisms of selected probes. Cytometry A 2010;77:623–634 [CrossRef][PubMed]
    [Google Scholar]
  46. Bunthof CJ, Bloemen K, Breeuwer P, Rombouts FM, Abee T. Flow cytometric assessment of viability of lactic acid bacteria. Appl Environ Microbiol 2001;67:2326–2335 [CrossRef][PubMed]
    [Google Scholar]
  47. Karászi E, Jakab K, Homolya L, Szakács G, Holló Z et al. Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia. Br J Haematol 2001;112:308–314 [CrossRef][PubMed]
    [Google Scholar]
  48. Kanade S, Nataraj G, Ubale M, Mehta P. Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on antituberculosis treatment. Int J Mycobacteriol 2016;5:294–298 [CrossRef][PubMed]
    [Google Scholar]
  49. Fittipaldi M, Nocker A, Codony F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 2012;91:276–289 [CrossRef][PubMed]
    [Google Scholar]
  50. Elizaquível P, Aznar R, Sánchez G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J Appl Microbiol 2014;116:1–13 [CrossRef][PubMed]
    [Google Scholar]
  51. Nogva HK, Drømtorp SM, Nissen H, Rudi K. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5'-nuclease PCR. Biotechniques 2003;34:804–813 [CrossRef][PubMed]
    [Google Scholar]
  52. Nocker A, Camper AK. Selective removal of dna from dead cells of mixed bacterial communities by use of ethidium monoazide selective removal of dna from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 2006;72:1997–2004
    [Google Scholar]
  53. Taylor MJ, Bentham RH, Ross KE. Limitations of using propidium monoazide with qPCR to discriminate between live and dead Legionella in Biofilm Samples. Microbiol Insights 2014;7:15–24 [CrossRef][PubMed]
    [Google Scholar]
  54. Nam S, Kwon S, Kim MJ, Chae JC, Jae Maeng P et al. Selective detection of viable Helicobacter pylori using ethidium monoazide or propidium monoazide in combination with real-time polymerase chain reaction. Microbiol Immunol 2011;55:841–846 [CrossRef][PubMed]
    [Google Scholar]
  55. Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 2006;67:310–320 [CrossRef][PubMed]
    [Google Scholar]
  56. Rueckert A, Ronimus RS, Morgan HW. Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. J Appl Microbiol 2005;99:1246–1255 [CrossRef][PubMed]
    [Google Scholar]
  57. Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol 2014;80:5884–5891 [CrossRef][PubMed]
    [Google Scholar]
  58. Chang B, Taguri T, Sugiyama K, Amemura-Maekawa J, Kura F et al. Comparison of ethidium monoazide and propidium monoazide for the selective detection of viable Legionella cells. Jpn J Infect Dis 2010;63:119–123[PubMed]
    [Google Scholar]
  59. Compton J. Nucleic acid sequence-based amplification. Nature 1991;350:91–92 [CrossRef][PubMed]
    [Google Scholar]
  60. Morré SA, Sillekens PT, Jacobs MV, de Blok S, Ossewaarde JM et al. Monitoring of Chlamydia trachomatis infections after antibiotic treatment using RNA detection by nucleic acid sequence based amplification. Mol Pathol 1998;51:149–154 [CrossRef][PubMed]
    [Google Scholar]
  61. van der Vliet GM, Schepers P, Schukkink RA, van Gemen B, Klatser PR. Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemother 1994;38:1959–1965 [CrossRef]
    [Google Scholar]
  62. Hønsvall BK, Robertson LJ. From research lab to standard environmental analysis tool: Will NASBA make the leap?. Water Res 2017;109:389–397 [CrossRef][PubMed]
    [Google Scholar]
  63. Cook N. The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbiol Methods 2003;53:165–174 [CrossRef][PubMed]
    [Google Scholar]
  64. Brink AA, Vervoort MB, Middeldorp JM, Meijer CJ, van den Brule AJ. Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR. J Clin Microbiol 1998;36:3164–3169[PubMed]
    [Google Scholar]
  65. Clancy E, Coughlan H, Higgins O, Boo TW, Cormican M et al. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis. J Microbiol Methods 2016;127:197–202 [CrossRef][PubMed]
    [Google Scholar]
  66. Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S et al. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull 2012;64:200–206 [CrossRef][PubMed]
    [Google Scholar]
  67. Min J, Baeumner AJ. Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal Biochem 2002;303:186–193 [CrossRef][PubMed]
    [Google Scholar]
  68. Zhai L, Liu H, Chen Q, Lu Z, Zhang C et al. Development of a real-time nucleic acid sequence-based amplification assay for the rapid detection of Salmonella spp. from food. Braz J Microbiol 2019;50:255–261 [CrossRef][PubMed]
    [Google Scholar]
  69. Williams MR, Stedtfeld RD, Waseem H, Stedtfeld T, Upham B et al. Implications of direct amplification for measuring antimicrobial resistance using point-of-care devices. Anal Methods 2017;9:1229–1241 [CrossRef][PubMed]
    [Google Scholar]
  70. Sugden D. Quantitative PCR. Med Biomethods Handb 2005;26:327–345
    [Google Scholar]
  71. Coutard F, Pommepuy M, Loaec S, Hervio-Heath D. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol 2005;98:951–961 [CrossRef][PubMed]
    [Google Scholar]
  72. Evguenieva-Hackenberg E, Klug G. New aspects of RNA processing in prokaryotes. Curr Opin Microbiol 2011;14:587–592 [CrossRef][PubMed]
    [Google Scholar]
  73. Nieminen T, Pakarinen J, Tsitko I, Salkinoja-Salonen M, Breitenstein A et al. 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J Microbiol Methods 2006;67:44–55 [CrossRef][PubMed]
    [Google Scholar]
  74. Ercolini D, Hill PJ, Dodd CE. Development of a fluorescence in situ hybridization method for cheese using a 16S rRNA probe. J Microbiol Methods 2003;52:267–271 [CrossRef][PubMed]
    [Google Scholar]
  75. Cangelosi GA, Weigel KM, Lefthand-Begay C, Meschke JS. Molecular detection of viable bacterial pathogens in water by ratiometric pre-rRNA analysis. Appl Environ Microbiol 2010;76:960–962 [CrossRef][PubMed]
    [Google Scholar]
  76. Weigel KM, Jones KL, do JS, Melton Witt J, Chung JH et al. Molecular viability testing of bacterial pathogens from a complex human sample matrix. PLoS One 2013;8:e54886 [CrossRef][PubMed]
    [Google Scholar]
  77. Weigel KM, Nguyen FK, Kearney MR, Meschke JS, Cangelosi GA. Molecular viability testing of uv-inactivated bacteria. Appl Environ Microbiol 2017;83:1–10 [CrossRef][PubMed]
    [Google Scholar]
  78. Oerther DB, Pernthaler J, Schramm A, Amann R, Raskin L. Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl Environ Microbiol 2000;66:2154–2165 [CrossRef][PubMed]
    [Google Scholar]
  79. Cangelosi GA, Brabant WH. Depletion of pre-16S rRNA in starved Escherichia coli cells. J Bacteriol 1997;179:4457–4463 [CrossRef][PubMed]
    [Google Scholar]
  80. do JS, Weigel KM, Meschke JS, Cangelosi GA. Biosynthetic enhancement of the detection of bacteria by the polymerase chain reaction. PLoS One 2014;9:1–7 [CrossRef][PubMed]
    [Google Scholar]
  81. Lomakina GY, Modestova YA, Ugarova NN. Bioluminescence assay for cell viability. Biochemistry 2015;80:701–713 [CrossRef][PubMed]
    [Google Scholar]
  82. Branchini BR, Southworth TL. A Highly Sensitive Biosensor for ATP Using a Chimeric Firefly Luciferase. Methods Enzymol 2017;589: [CrossRef][PubMed]
    [Google Scholar]
  83. Venkateswaran K, Hattori N, La Duc MT, Kern R. ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 2003;52:367–377 [CrossRef][PubMed]
    [Google Scholar]
  84. Fajardo-Cavazos P, Schuerger AC, Nicholson WL. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment. Appl Environ Microbiol 2008;74:5159–5167 [CrossRef][PubMed]
    [Google Scholar]
  85. Arroyo MG, Ferreira AM, Frota OP, Rigotti MA, de Andrade D et al. Effectiveness of ATP bioluminescence assay for presumptive identification of microorganisms in hospital water sources. BMC Infect Dis 2017;17:458 [CrossRef][PubMed]
    [Google Scholar]
  86. Kajigaya N, Hirose Y, Koike S, Fujita T, Yokota N et al. Assessment of contamination using an ATP bioluminescence assay on doorknobs in a university-affiliated hospital in Japan. BMC Res Notes 2015;8:352 [CrossRef][PubMed]
    [Google Scholar]
  87. Childress J, Burch D, Kucharski C, Young C, Kazerooni EA et al. Bacterial contamination of CT equipment: use of ATP detection and culture results to target quality improvement. Acad Radiol 2017;24: [CrossRef][PubMed]
    [Google Scholar]
  88. Hammes F, Goldschmidt F, Vital M, Wang Y, Egli T. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Res 2010;44:3915–3923 [CrossRef][PubMed]
    [Google Scholar]
  89. Martens R. Estimation of ATP in soil: extraction methods and calculation of extraction efficiency. Soil Biology and Biochemistry 2001;33:973–982 [CrossRef]
    [Google Scholar]
  90. Kolibab K, Derrick SC, Jacobs WR, Morris SL. Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations. J Microbiol Methods 2012;90:245–249 [CrossRef][PubMed]
    [Google Scholar]
  91. Brown HL, van Vliet AH, Betts RP, Reuter M. Tetrazolium reduction allows assessment of biofilm formation by Campylobacter jejuni in a food matrix model. J Appl Microbiol 2013;115:1212–1221 [CrossRef][PubMed]
    [Google Scholar]
  92. Stiefel P, Schneider J, Amberg C, Maniura-Weber K, Ren Q. A simple and rapid method for optical visualization and quantification of bacteria on textiles. Sci Rep 2016;6:39635 [CrossRef][PubMed]
    [Google Scholar]
  93. Servais P, Agogué H, Courties C, Joux F, Lebaron P. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?. FEMS Microbiol Ecol 2001;35:171–179 [CrossRef][PubMed]
    [Google Scholar]
  94. Pérez LM, Alvarez BL, Codony F, Fittipaldi M, Adrados B et al. A new microtitre plate screening method for evaluating the viability of aerobic respiring bacteria in high surface biofilms. Lett Appl Microbiol 2010;51:331–337 [CrossRef][PubMed]
    [Google Scholar]
  95. Twigg RS. Oxidation-reduction aspects of resazurin. Nature 1945;155:401–402 [CrossRef]
    [Google Scholar]
  96. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321–324 [CrossRef][PubMed]
    [Google Scholar]
  97. Foerster S, Desilvestro V, Hathaway LJ, Althaus CL, Unemo M. A new rapid resazurin-based microdilution assay for antimicrobial susceptibility testing of Neisseria gonorrhoeae. J Antimicrob Chemother 2017;72:1961–1968 [CrossRef][PubMed]
    [Google Scholar]
  98. Palomino JC, Martin A, Camacho M, Guerra H, Swings J et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002;46:2720–2722 [CrossRef][PubMed]
    [Google Scholar]
  99. Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE et al. Simple and precise counting of viable bacteria by resazurin-amplified picoarray detection. Anal Chem 2018;90:9449–9456 [CrossRef][PubMed]
    [Google Scholar]
  100. Kogure K, Simidu U, Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 1979;25:415–420 [CrossRef][PubMed]
    [Google Scholar]
  101. Yokomaku D, Yamaguchi N, Nasu M. Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments. Appl Environ Microbiol 2000;66:5544–5548 [CrossRef][PubMed]
    [Google Scholar]
  102. Joux F, Lebaron P. Ecological implications of an improved direct viable count method for aquatic bacteria. Appl Environ Microbiol 1997;63:3643–3647[PubMed]
    [Google Scholar]
  103. Altug G, Cardak M, Ciftci PS, Gurun S. The application of viable count procedures for measuring viable cells in the various marine environments. J Appl Microbiol 2010;108:88–95 [CrossRef][PubMed]
    [Google Scholar]
  104. Besnard V, Federighi M, Cappelier JM. Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes. Lett Appl Microbiol 2000;31:77–81 [CrossRef][PubMed]
    [Google Scholar]
  105. Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP. Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. J Microbiol Methods 2003;55:585–597 [CrossRef][PubMed]
    [Google Scholar]
  106. Moreno-Mesonero L, Moreno Y, Alonso JL, Ferrús MA. DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Res Microbiol 2016;167:29–34 [CrossRef][PubMed]
    [Google Scholar]
  107. Tirodimos I, Bobos M, Kazakos E, Haidich AB, Dardavessis T et al. Molecular detection of Helicobacter pylori in a large mediterranean river, by direct viable count fluorescent in situ hybridization (DVC-FISH). J Water Health 2014;12:868–873 [CrossRef][PubMed]
    [Google Scholar]
  108. Higuera-Guisset J, Rodríguez-Viejo J, Chacón M, Muñoz FJ, Vigués N et al. Calorimetry of microbial growth using a thermopile based microreactor. Thermochimica Acta 2005;427:187–191 [CrossRef]
    [Google Scholar]
  109. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 2010;303:1–8 [CrossRef][PubMed]
    [Google Scholar]
  110. Critter SAM, Freitas SS, Airoldi C. Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochimica Actavol. 394 2002; pp.133–144 [CrossRef]
    [Google Scholar]
  111. Trampuz A, Salzmann S, Antheaume J, Daniels AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion 2007;47:1643–1650 [CrossRef][PubMed]
    [Google Scholar]
  112. Haglund AL, Lantz P, Törnblom E, Tranvik L. Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microbiol Ecol 2003;46:31–38 [CrossRef][PubMed]
    [Google Scholar]
  113. Xi L. Microcalorimetric study of Staphylococcus aureus growth affected by selenium compounds. Thermochimica Acta 2002;387:57–61 [CrossRef]
    [Google Scholar]
  114. Yang LN, Xu F, Sun LX, Zhao ZB, Song CG. Microcalorimetric studies on the antimicrobial actions of different cephalosporins. J Therm Anal Calorim 2008;93:417–421 [CrossRef]
    [Google Scholar]
  115. von Ah U, Wirz D, Daniels AU. Isothermal micro calorimetry – a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol 2009;9:106 [CrossRef][PubMed]
    [Google Scholar]
  116. Bonkat G, Braissant O, Widmer AF, Frei R, Rieken M et al. Rapid detection of urinary tract pathogens using microcalorimetry: principle, technique and first results. BJU Int 2012;110:892–897 [CrossRef][PubMed]
    [Google Scholar]
  117. Trampuz M. Real-time antimicrobial susceptibility assay of planktonic and biofilm bacteria by isothermal microcalorimetry. Advances in Experimental Medicine and Biology New York, NY: Springer; 2018; pp.1–17
    [Google Scholar]
  118. Lewis G, Daniels AU. Use of isothermal heat-conduction microcalorimetry (IHCMC) for the evaluation of synthetic biomaterials. J Biomed Mater Res 2003;66:487–501 [CrossRef][PubMed]
    [Google Scholar]
  119. Rettedal EA, Brözel VS. Characterizing the diversity of active bacteria in soil by comprehensive stable isotope probing of DNA and RNA with H218O. Microbiologyopen 2015;4:208–219 [CrossRef][PubMed]
    [Google Scholar]
  120. Reichardt N, Barclay AR, Weaver LT, Morrison DJ. Use of stable isotopes to measure the metabolic activity of the human intestinal microbiota. Appl Environ Microbiol 2011;77:8009–8014 [CrossRef][PubMed]
    [Google Scholar]
  121. Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA et al. Stable isotope probing with 180-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol 2016;41:14–18 [CrossRef][PubMed]
    [Google Scholar]
  122. Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU et al. Determination of resistant starch assimilating bacteria in fecal samples of Mice by in vitro RNA-based stable isotope probing. Front Microbiol 2017;8: [CrossRef][PubMed]
    [Google Scholar]
  123. Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol 2015;81:7570–7581 [CrossRef][PubMed]
    [Google Scholar]
  124. Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice Ö et al. DNA, RNA, and protein-based stable-isotope probing for high-throughput biomarker analysis of active microorganisms. In Daniel R. (editor) Metagenomics: Methods and Protocols New York: Springer; 2017; pp.57–74
    [Google Scholar]
  125. Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta 2017;162:511–522 [CrossRef]
    [Google Scholar]
  126. Haber JM, Gascoyne PRC, Sokolov K. Rapid real-time recirculating PCR using localized surface plasmon resonance (LSPR) and piezo-electric pumping. Lab Chip 2017;17:2821–2830 [CrossRef][PubMed]
    [Google Scholar]
  127. Ondera TJ, Hamme AT. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2015;140:7902–7911 [CrossRef][PubMed]
    [Google Scholar]
  128. Huang H, Liu M, Wang X, Zhang W, Yang DP et al. Label-free 3d ag nanoflower-based electrochemical immunosensor for the detection of Escherichia coli O157:H7 pathogens. Nanoscale Res Lett 2016;11: [CrossRef]
    [Google Scholar]
  129. Cao B, Li R, Xiong S, Yao F, Liu X et al. Use of a DNA microarray for detection and identification of bacterial pathogens associated with fishery products. Appl Environ Microbiol 2011;77:8219–8225 [CrossRef][PubMed]
    [Google Scholar]
  130. Donhauser SC, Niessner R, Seidel M. Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chemistry 2011;83:3153–3160 [CrossRef]
    [Google Scholar]
  131. Garneau P, Labrecque O, Maynard C, Messier S, Masson L et al. Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus. Zoonoses Public Health 2010;57:94–99 [CrossRef][PubMed]
    [Google Scholar]
  132. Koyuncu S, Andersson G, Vos P, Häggblom P. DNA microarray for tracing Salmonella in the feed chain. Int J Food Microbiol 2011;145:S18–S22 [CrossRef][PubMed]
    [Google Scholar]
  133. Li Y. Establishment and application of a visual dna microarray for the detection of food-borne pathogens. Anal Sci 2016;32:215–218 [CrossRef][PubMed]
    [Google Scholar]
  134. Srinivasan V, Stedtfeld RD, Tourlousse DM, Baushke SW, Xin Y et al. Diagnostic microarray for 14 water and foodborne pathogens using a flatbed scanner. J Microbiol Methods 2017;139:15–21 [CrossRef][PubMed]
    [Google Scholar]
  135. Cao J, Gao S, Chen J, Zhu B, Min R et al. The preparation and clinical application of diagnostic DNA microarray for the detection of pathogens in intracranial bacterial and fungal infections. Exp Ther Med 2018;16:1304–1310 [CrossRef][PubMed]
    [Google Scholar]
  136. Sandetskaya N, Moos D, Pötter H, Seifert S, Jenerowicz M et al. An integrated versatile lab-on-a-chip platform for the isolation and nucleic acid-based detection of pathogens. Future Sci OA 2017;3:FSO177 [CrossRef][PubMed]
    [Google Scholar]
  137. Reinholt SJ, Baeumner AJ. Microfluidic isolation of nucleic acids. Angew Chem Int Ed 2014
    [Google Scholar]
  138. Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF et al. Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 2010;23:733–737
    [Google Scholar]
  139. Coelho B, Veigas B, Fortunato E, Martins R, Águas H et al. Digital microfluidics for nucleic acid amplification. Sensors 2017;17:1495 [CrossRef][PubMed]
    [Google Scholar]
  140. Lee JG, Cheong KH, Huh N, Kim S, Choi JW et al. Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 2006;6:886–895 [CrossRef][PubMed]
    [Google Scholar]
  141. Huang G, Huang Q, Xie L, Xiang G, Wang L et al. A rapid, low-cost, and microfluidic chip-based system for parallel identification of multiple pathogens related to clinical pneumonia. Sci Rep 2017;7:6441 [CrossRef][PubMed]
    [Google Scholar]
  142. Garrido-Maestu A, Azinheiro S, Carvalho J, Abalde-Cela S, Carbó-Argibay E et al. Combination of microfluidic loop-mediated isothermal amplification with gold nanoparticles for rapid detection of salmonella spp. in food samples. Front Microbiol 2017;8: [CrossRef][PubMed]
    [Google Scholar]
  143. Renner LD, Zan J, Hu LI, Martinez M, Resto PJ et al. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform. Appl Environ Microbiol 2017;83: [CrossRef][PubMed]
    [Google Scholar]
  144. Krüger NJ, Buhler C, Iwobi AN, Huber I, Ellerbroek L et al. "Limits of control” – Crucial parameters for a reliable quantification of viable campylobacter by Real-time PCR. PLoS One 2014;9:e88108 [CrossRef][PubMed]
    [Google Scholar]
  145. Lisle JT, Pyle BH, McFeters GA. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7. Lett Appl Microbiol 1999;29:42–47 [CrossRef][PubMed]
    [Google Scholar]
  146. Lim MC, Lee GH, Huynh DTN, Hong CE, Park SY et al. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Colloids Surf B Biointerfaces 2016;145:854–861 [CrossRef][PubMed]
    [Google Scholar]
  147. Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP et al. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 2016;59:601–608 [CrossRef]
    [Google Scholar]
  148. Ahmed S, Erdmann H. Development of an immunomagnetic separation method for viable Salmonella Typhimurium detected by flow cytometry. Online J Biol Sci 2016;1:174
    [Google Scholar]
  149. Wang L, Li Y, Mustaphai A. Rapid and simultaneous quantitation of Escherichia coli 0157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation. J Food Prot 2007;70:1366–1372 [CrossRef][PubMed]
    [Google Scholar]
  150. Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 2007;118:132–138 [CrossRef][PubMed]
    [Google Scholar]
  151. Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H et al. Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal Chim Acta 2006;574:158–163 [CrossRef][PubMed]
    [Google Scholar]
  152. Bushon RN, Brady AM, Likirdopulos CA, Cireddu JV. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique. J Appl Microbiol 2009;106:432–441 [CrossRef][PubMed]
    [Google Scholar]
  153. Miyatake T, MacGregor BJ, Boschker HT. Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl Environ Microbiol 2009;75:4927–4935 [CrossRef][PubMed]
    [Google Scholar]
  154. Seo SM, Cho IH, Jeon JW, Cho HK, Oh EG et al. An ELISA-on-a-chip biosensor system coupled with immunomagnetic separation for the detection of Vibrio parahaemolyticus within a single working day. J Food Prot 2010;73:1466–1473 [CrossRef][PubMed]
    [Google Scholar]
  155. Signoretto C, Lleò M, Canepari P. Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 2002;44:125–131 [CrossRef][PubMed]
    [Google Scholar]
  156. Sörberg M, Nilsson M, Hanberger H, Nilsson LE. Morphologic conversion of Helicobacter pylori from bacillary to coccoid form. Eur J Clin Microbiol Infect Dis 1996;15:216–219 [CrossRef][PubMed]
    [Google Scholar]
  157. Willén R, Carlén B, Wang X, Papadogiannakis N, Odselius R et al. Morphologic conversion of Helicobacter pylori from spiral to coccoid form. Scanning (SEM) and transmission electron microscopy (TEM) suggest viability. Ups J Med Sci 2000;105:31–40 [CrossRef][PubMed]
    [Google Scholar]
  158. Cook KL, Bolster CH. Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. J Appl Microbiol 2007;103:573–583 [CrossRef][PubMed]
    [Google Scholar]
  159. Trevors JT. Viable but non-culturable (VBNC) bacteria: gene expression in planktonic and biofilm cells. J Microbiol Methods 2011;86:266–273 [CrossRef][PubMed]
    [Google Scholar]
  160. Lleó MM, Tafi MC, Canepari P. Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst Appl Microbiol 1998;21:333–339 [CrossRef][PubMed]
    [Google Scholar]
  161. Su X, Sun F, Wang Y, Hashmi MZ, Guo L et al. Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci Rep 2015;5:18590 [CrossRef][PubMed]
    [Google Scholar]
  162. Lindbäck T, Rottenberg ME, Roche SM, Rørvik LM. The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 2010;41:08 [CrossRef]
    [Google Scholar]
  163. Kassem II, Chandrashekhar K, Rajashekara G. Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni. Front Microbiol 2013;4: [CrossRef][PubMed]
    [Google Scholar]
  164. Lázaro B, Cárcamo J, Audícana A, Perales I, Fernández-Astorga A. Viability and DNA maintenance in culturable spiral Campylobacter jejuni cells after long-term exposure to low temperatures. Microbiol 1999;65:4677–4681
    [Google Scholar]
  165. Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y et al. Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 2007;9:869–879 [CrossRef][PubMed]
    [Google Scholar]
  166. González-Escalona N, Fey A, Höfle MG, Espejo RT, Guzmán CA. Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock. Environ Microbiol 2006;8:658–666 [CrossRef][PubMed]
    [Google Scholar]
  167. Lleò MM, Pierobon S, Tafi MC, Signoretto C, Canepari P. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 2000;66:4564–4567 [CrossRef][PubMed]
    [Google Scholar]
  168. Sun F, Chen J, Zhong L, Zhang XH, Wang R et al. Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiol Ecol 2008;64:37–44 [CrossRef][PubMed]
    [Google Scholar]
  169. Oliver JD, Bockian R. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol 1995;61:2620–2623[PubMed]
    [Google Scholar]
  170. Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R et al. Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int J Food Microbiol 2003;89:31–39 [CrossRef][PubMed]
    [Google Scholar]
  171. Weichart D, Kjelleberg S. Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology 1996;142:845–853 [CrossRef][PubMed]
    [Google Scholar]
  172. Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, El-Registan GI et al. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology 2009;155:1071–1079 [CrossRef][PubMed]
    [Google Scholar]
  173. Lleò MM, Benedetti D, Tafi MC, Signoretto C, Canepari P. Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environ Microbiol 2007;9:2313–2320 [CrossRef][PubMed]
    [Google Scholar]
  174. Nowakowska J, Oliver JD. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 2013;84:213–222 [CrossRef][PubMed]
    [Google Scholar]
  175. Wong HC, Wang P. Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J Appl Microbiol 2004;96:359–366 [CrossRef][PubMed]
    [Google Scholar]
  176. Hu Y, Coates A. Nonmultiplying bacteria are profoundly tolerant to antibiotics. Handb Exp Pharmacol 2012;211:99–119
    [Google Scholar]
  177. du M, Chen J, Zhang X, Li A, Li Y et al. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl Environ Microbiol 2007;73:1349–1354 [CrossRef][PubMed]
    [Google Scholar]
  178. Duffy LL, Dykes GA. The ability of Campylobacter jejuni cells to attach to stainless steel does not change as they become nonculturable. Foodborne Pathog Dis 2009;6:631–634 [CrossRef][PubMed]
    [Google Scholar]
  179. Pruzzo C, Tarsi R, Lleò MM, Signoretto C, Zampini M et al. Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea water. Environ Microbiol 2003;5:850–858 [CrossRef][PubMed]
    [Google Scholar]
  180. Lleo M, Bonato B, Tafi MC, Caburlotto G, Benedetti D et al. Adhesion to medical device materials and biofilm formation capability of some species of enterococci in different physiological states. FEMS Microbiol Lett 2007;274:232–237 [CrossRef][PubMed]
    [Google Scholar]
  181. Shindy HA. Fundamentals in the chemistry of cyanine dyes: a review. Dyes and Pigments 2017;145:505–513 [CrossRef]
    [Google Scholar]
  182. Ag T, Probes F, Technologies L. The Molecular Probes Handbook. Mol Probes Handbook. 2010;99:121 Available fromhttp://www.lifetechnologies.com/tr/en/home/references/molecular-probes-the-handbook.html
  183. Uggeri J, Gatti R, Belletti S, Scandroglio R, Corradini R et al. Calcein-AM is a detector of intracellular oxidative activity. Histochem Cell Biol 2004;122:499–505 [CrossRef][PubMed]
    [Google Scholar]
  184. Cléach J, Watier D, Le FB, Brauge T, Duflos G et al. Use of ratiometric probes with a spectrofluorometer for bacterial viability measurement. 2018;281782–1790
  185. Reyneke B, Ndlovu T, Khan S, Khan W. Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability. Appl Microbiol Biotechnol 2017;101:7371–7383 [CrossRef][PubMed]
    [Google Scholar]
  186. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods 2014;105:134–140 [CrossRef][PubMed]
    [Google Scholar]
  187. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol 2017;17:36 [CrossRef][PubMed]
    [Google Scholar]
  188. Barbau-Piednoir E, Mahillon J, Pillyser J, Coucke W, Roosens NH et al. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J Microbiol Methods 2014;103:131–137 [CrossRef][PubMed]
    [Google Scholar]
  189. Liu J, Gratz J, Maro A, Kumburu H, Kibiki G et al. Simultaneous detection of six diarrhea-causing bacterial pathogens with an in-house PCR-luminex assay. J Clin Microbiol 2012;50:98–103 [CrossRef][PubMed]
    [Google Scholar]
  190. Li H, Xin H, Li SF. Multiplex PMA-qPCR assay with internal amplification control for simultaneous detection of viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in environmental waters. Environ Sci Technol 2015;49:14249–14256 [CrossRef][PubMed]
    [Google Scholar]
  191. Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN et al. New perspectives on viable microbial communities in low-biomass cleanroom environments. Isme J 2013;7:312–324 [CrossRef][PubMed]
    [Google Scholar]
  192. Huang WC, Tsai HC, Tao CW, Chen JS, Shih YJ et al. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments. PLoS One 2017;12:e0170992 [CrossRef][PubMed]
    [Google Scholar]
  193. Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R. Discrimination between live and dead cells in bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int Microbiol 2010;13:59–65 [CrossRef][PubMed]
    [Google Scholar]
  194. Fujimoto M, Moyerbrailean GA, Noman S, Gizicki JP, Ram ML et al. Application of ion torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity. PLoS One 2014;9:e107534 [CrossRef]
    [Google Scholar]
  195. Chen S, Wang F, Beaulieu JC, Stein RE, Ge B. Rapid detection of viable salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl Environ Microbiol 2011;77:4008–4016 [CrossRef][PubMed]
    [Google Scholar]
  196. Weinmaier T, Probst AJ, La Duc MT, Ciobanu D, Cheng JF et al. A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses. Microbiome 2015;3:62 [CrossRef][PubMed]
    [Google Scholar]
  197. Yan M, Xu L, Jiang H, Zhou Z, Zhou S et al. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state. Microb Pathog 2017;105:245–250 [CrossRef][PubMed]
    [Google Scholar]
  198. Safavieh M, Ahmed MU, Tolba M, Zourob M. Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosens Bioelectron 2012;31:523–528 [CrossRef][PubMed]
    [Google Scholar]
  199. Gaydos CA, Hobbs M, Marrazzo J, Schwebke J, Coleman JS et al. Rapid diagnosis of Trichomonas vaginalis by testing vaginal swabs in an isothermal helicase-dependent amplivue assay. Sex Transm Dis 2016;43:369–373 [CrossRef][PubMed]
    [Google Scholar]
  200. Mahalanabis M, do J, Almuayad H, Zhang JY, Klapperich CM. An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices 2010;12:353–359 [CrossRef][PubMed]
    [Google Scholar]
  201. Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal Chem 2018;90:6580–6586 [CrossRef][PubMed]
    [Google Scholar]
  202. Chen X, Wang B, Yang W, Kong F, Li C et al. Rolling circle amplification for direct detection of rpoB gene mutations in Mycobacterium tuberculosis isolates from clinical specimens. J Clin Microbiol 2014;52:1540–1548 [CrossRef][PubMed]
    [Google Scholar]
  203. Mahmoudian L, Kaji N, Tokeshi M, Nilsson M, Baba Y. Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal Chem 2008;80:2483–2490 [CrossRef][PubMed]
    [Google Scholar]
  204. Raja B, Goux HJ, Marapadaga A, Rajagopalan S, Kourentzi K et al. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens. J Appl Microbiol 2017;123:544–555 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000786
Loading
/content/journal/micro/10.1099/mic.0.000786
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error