1887

Abstract

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6–12, 41–96 and 21–81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a ≥95 % phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000768
2019-01-23
2019-10-21
Loading full text...

Full text loading...

References

  1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 2011;17:7–15 [CrossRef][PubMed]
    [Google Scholar]
  2. CDC Antibiotic resistance threats in the United States, 2013 [Internet]. Atlanta 2013; Available fromhttps://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf#page=71 Cited 2017 Jan 31
    [Google Scholar]
  3. Jackson BR, Griffin PM, Cole D, Walsh KA, Chai SJ. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998-2008. Emerg Infect Dis 2013;19:1239–1244 Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/23876503 Cited 2018 Feb 5 [CrossRef][PubMed]
    [Google Scholar]
  4. CDC Surveillance for foodborne disease outbreaks, United States, 2015, annual report [Internet]. Atlanta, Georgia 2017; Available fromhttps://www.cdc.gov/foodsafety/pdfs/2015FoodBorneOutbreaks_508.pdf Cited 2018 Feb 5
    [Google Scholar]
  5. Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD et al. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996-2011. PLoS One 2015;10:e0145416 [CrossRef][PubMed]
    [Google Scholar]
  6. FDA Retail meat interim report [Internet]. Rockville, MD 2014-2015;2015: Available fromhttps://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM498134.pdf Cited 2018 Feb 7
    [Google Scholar]
  7. Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis 2001;32:263–269 [CrossRef][PubMed]
    [Google Scholar]
  8. House W. National Strategy For Combating Antibiotic- Resistant Bacteria [Internet]. Washington DC 2014; Available fromhttps://obamawhitehouse.archives.gov/sites/default/files/docs/carb_national_strategy.pdf Cited 2018 May 20
    [Google Scholar]
  9. Gilbert JM, White DG, McDermott PF. The US national antimicrobial resistance monitoring system. Future Microbiol 2007;2:493–500 [CrossRef][PubMed]
    [Google Scholar]
  10. Salipante SJ, Sengupta DJ, Cummings LA, Land TA, Hoogestraat DR et al. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 2015;53:1072–1079 [CrossRef][PubMed]
    [Google Scholar]
  11. Bekal S, Berry C, Reimer AR, van Domselaar G, Beaudry G et al. Usefulness of High-Quality Core Genome Single-Nucleotide Variant Analysis for Subtyping the Highly Clonal and the Most Prevalent Salmonella enterica Serovar Heidelberg Clone in the Context of Outbreak Investigations. J Clin Microbiol 2016;54:289–295 [CrossRef][PubMed]
    [Google Scholar]
  12. Kahlmeter G. Defining antibiotic resistance-towards international harmonization. Ups J Med Sci 2014;119:78–86 [CrossRef][PubMed]
    [Google Scholar]
  13. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 2016;60:5515–5520 [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffmann M, Zhao S, Pettengill J, Luo Y, Monday SR et al. Comparative genomic analysis and virulence differences in closely related salmonella enterica serotype heidelberg isolates from humans, retail meats, and animals. Genome Biol Evol 2014;6:1046–1068 [CrossRef][PubMed]
    [Google Scholar]
  15. Phillips A, Sotomayor C, Wang Q, Holmes N, Furlong C et al. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014. BMC Microbiol 2011;16
    [Google Scholar]
  16. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J et al. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 2014;20:1306–1314 [CrossRef][PubMed]
    [Google Scholar]
  17. Allard MW, Luo Y, Strain E, Li C, Keys CE et al. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics 2012;13:32 [CrossRef][PubMed]
    [Google Scholar]
  18. Wilson MR, Brown E, Keys C, Strain E, Luo Y et al. Whole genome DNA sequence analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks. PLoS One 2016;11:e0146929 [CrossRef][PubMed]
    [Google Scholar]
  19. Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One 2014;9:e87991 [CrossRef][PubMed]
    [Google Scholar]
  20. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR et al. Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States. J Infect Dis 2016;213:502–508 [CrossRef][PubMed]
    [Google Scholar]
  21. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ et al. Characterization of foodborne outbreaks of Salmonella enterica Serovar enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J Clin Microbiol 2015;53:3334–3340 [CrossRef][PubMed]
    [Google Scholar]
  22. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V et al. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol 2015;53:1063–1071 [CrossRef][PubMed]
    [Google Scholar]
  23. Narms CDC. human isolates surveillance report [Internet]. Atlanta, Georgia 2014;2014:
    [Google Scholar]
  24. Edirmanasinghe R, Finley R, Parmley EJ, Avery BP, Carson C et al. A whole-genome sequencing approach to study cefoxitin-resistant Salmonella enterica Serovar Heidelberg isolates from various sources. Antimicrob Agents Chemother 2017;61:e01919e16 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S et al. Whole-Genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 2016;82:459–466 [CrossRef][PubMed]
    [Google Scholar]
  26. FDA Retail meat report National Antimicrobial Resistance Monitoring System [Internet]. Laurel, Maryland 2012;2012: Available fromhttps://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM442212.pdf Cited 2018 Mar 4
    [Google Scholar]
  27. Pennsylvania Department of Health. List of reportable diseases [Internet]. Available fromand Bureaus/epidemiology/Pages/Reportable-Diseases.aspx#.Wv2bY9PwbULhttp://www.health.pa.gov/Your-Department-of-Health/Offices Cited 2018 May 17
  28. CDC Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri [Internet]. Atlanta, GA 2017; Available fromhttps://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf Cited 2018 Apr 10
    [Google Scholar]
  29. Sandt CH, Fedorka-Cray PJ, Tewari D, Ostroff S, Joyce K et al. A comparison of non-typhoidal Salmonella from humans and food animals using pulsed-field gel electrophoresis and antimicrobial susceptibility patterns. PLoS One 2013;8:e77836 [CrossRef][PubMed]
    [Google Scholar]
  30. FDA Table 1. Interpretive criteria used for susceptibility testing of Salmonella and E. coli [Internet]. Available fromhttps://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM581395.pdf Cited 2018 May 17
  31. Yao K, Muruvanda T, Roberts RJ, Payne J, Allard MW et al. Complete genome and methylome sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791). Genome Announc 2016;4:e0013316 [CrossRef][PubMed]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  33. Bioinformatics B. FastQC v0.11.5. 2016; Available fromhttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  34. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Internet]. 2013;001–3
  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J1000 Genome Project Data Processing Subgroup et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  37. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL et al. Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 2015;53:1685–1692 [CrossRef][PubMed]
    [Google Scholar]
  39. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genomics [Internet]. 2017;6
  40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  41. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinforma Appl Note [Internet]. 2011;272156–2158
  42. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms. 2012;680–92
  43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  44. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  45. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014;6:90 [CrossRef][PubMed]
    [Google Scholar]
  46. Neuert S, Nair S, Day MR, Doumith M, Ashton PM et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front Microbiol 2018;9:592 [CrossRef][PubMed]
    [Google Scholar]
  47. Carattoli A, Zankari E, Garcìa-Fernandez A, Larsen MV, Lund O et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 2014;58:3895–3903
    [Google Scholar]
  48. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402 [CrossRef][PubMed]
    [Google Scholar]
  49. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  50. M'Ikanatha NM, Sandt CH, Localio AR, Tewari D, Rankin SC et al. Multidrug-resistant Salmonella isolates from retail chicken meat compared with human clinical isolates. Foodborne Pathog Dis 2010;7:929–934 [CrossRef][PubMed]
    [Google Scholar]
  51. Scheinberg J, Doores S, Cutter CN. A microbiological comparison of poultry products obtained from farmers' markets and supermarkets in Pennsylvania. J Food Saf 2013;33:259–264 [CrossRef]
    [Google Scholar]
  52. Gymoese P, Sørensen G, Litrup E, Olsen JE, Nielsen EM et al. Investigation of outbreaks of Salmonella enterica Serovar Typhimurium and Its monophasic variants using whole-genome sequencing, Denmark. Emerg Infect Dis 2017;23:1631–1639 [CrossRef][PubMed]
    [Google Scholar]
  53. Ashton PM, Peters T, Ameh L, McAleer R, Petrie S et al. Whole genome sequencing for the retrospective investigation of an outbreak of Salmonella Typhimurium DT 8. PLoS Curr 2015;7: [CrossRef][PubMed]
    [Google Scholar]
  54. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013;68:771–777 [CrossRef][PubMed]
    [Google Scholar]
  55. Tyson GH, Li C, Ayers S, McDermott PF, Zhao S. Using whole-genome sequencing to determine appropriate streptomycin epidemiological cutoffs for Salmonella and Escherichia coli. FEMS Microbiol Lett 2016;363:fnw009 [CrossRef][PubMed]
    [Google Scholar]
  56. Chen S, Zhao S, White DG, Schroeder CM, Lu R et al. Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats. Appl Environ Microbiol 2004;70:1–7 [CrossRef][PubMed]
    [Google Scholar]
  57. Folster JP, Pecic G, Rickert R, Taylor J, Zhao S et al. Characterization of multidrug-resistant Salmonella enterica serovar heidelberg from a ground turkey-associated outbreak in the United States in 2011. Antimicrob Agents Chemother 2012;56:3465–3466 [CrossRef][PubMed]
    [Google Scholar]
  58. Patchanee P, Zewde BM, Tadesse DA, Hoet A, Gebreyes WA. Characterization of multidrug-resistant Salmonella enterica serovar Heidelberg isolated from humans and animals. Foodborne Pathog Dis 2008;5:839–851 [CrossRef][PubMed]
    [Google Scholar]
  59. Han J, Lynne AM, David DE, Tang H, Xu J et al. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS One 2012;7:e51160 [CrossRef][PubMed]
    [Google Scholar]
  60. Rehman MA, Yin X, Persaud-Lachhman MG, Diarra MS. First detection of a fosfomycin resistance gene, fosA7, in Salmonella enterica Serovar Heidelberg Isolated from Broiler Chickens. Antimicrob Agents Chemother 2017;61:e0041000417 [CrossRef][PubMed]
    [Google Scholar]
  61. Folster JP, Pecic G, Singh A, Duval B, Rickert R et al. Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog Dis [Internet]. 2012;9638–645
  62. Boyd DA, Peters GA, Ng L, Mulvey MR. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett 2000;189:285–291 [CrossRef][PubMed]
    [Google Scholar]
  63. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 2001;183:5725–5732 [CrossRef][PubMed]
    [Google Scholar]
  64. Gray JT, Hungerford LL, Fedorka-Cray PJ, Headrick ML. Extended-spectrum-cephalosporin resistance in Salmonella enterica isolates of animal origin. Antimicrob Agents Chemother 2004;48:3179–3181 [CrossRef][PubMed]
    [Google Scholar]
  65. Frech G, Kehrenberg C, Schwarz S. Resistance phenotypes and genotypes of multiresistant Salmonella enterica subsp. enterica serovar Typhimurium var. Copenhagen isolates from animal sources. J Antimicrob Chemother 2003;51:180–182 [CrossRef][PubMed]
    [Google Scholar]
  66. Gebreyes WA, Altier C. Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. J Clin Microbiol 2002;40:2813–2822 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000768
Loading
/content/journal/micro/10.1099/mic.0.000768
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error