1887

Abstract

Bacterial persisters are a subpopulation of cells that exhibit phenotypic resistance during exposure to a lethal dose of antibiotics. They are difficult to target and thought to contribute to the long treatment duration required for tuberculosis. Understanding the molecular and cellular biology of persisters is critical to finding new tuberculosis drugs that shorten treatment. This review focuses on mycobacterial persisters and describes the challenges they pose in tuberculosis therapy, their characteristics and formation, how persistence leads to resistance, and the current approaches being used to target persisters within mycobacterial drug discovery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000760
2019-05-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/5/492.html?itemId=/content/journal/micro/10.1099/mic.0.000760&mimeType=html&fmt=ahah

References

  1. Gordon SV, Parish T. Microbe profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe. Microbiology 2018;164:437–439 [CrossRef][PubMed]
    [Google Scholar]
  2. WHO Global Tuberculosis Report 2018. 2018; Available fromwww.who.int/tb/publications/global_report/en/
  3. WHO Guidelines for treatment of tuberculosis. 2010; Available fromwww.who.int/tb/publications/2010/9789241547833/en/
  4. Fauvart M, de Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 2011;60:699–709 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang Y. Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 2014;3:e3 [CrossRef][PubMed]
    [Google Scholar]
  6. Lewis K. Persister Cells. Annu Rev Microbiol 2010;64:357–372 [CrossRef]
    [Google Scholar]
  7. Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 2012;56:2223–2230 [CrossRef][PubMed]
    [Google Scholar]
  8. Helaine S, Kugelberg E. Formation bacterial persisters:eradication, and experimental systems. Trends Microbiol 2014;22:417–424
    [Google Scholar]
  9. Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016;354:aaf4268 [CrossRef][PubMed]
    [Google Scholar]
  10. Michiels JE, van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 2016;29:76–89 [CrossRef][PubMed]
    [Google Scholar]
  11. Chuang YM, Bandyopadhyay N, Rifat D, Rubin H, Bader JS et al. Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. MBio 2015;6:e02428 [CrossRef][PubMed]
    [Google Scholar]
  12. Torrey HL, Keren I, Via LE, Lee JS, Lewis K. High persister mutants in Mycobacterium tuberculosis. PLoS One 2016;11:e0155127 [CrossRef][PubMed]
    [Google Scholar]
  13. de Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM et al. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 2009;297:73–79 [CrossRef][PubMed]
    [Google Scholar]
  14. Gomez JE, Mckinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 2004;84:29–44 [CrossRef][PubMed]
    [Google Scholar]
  15. Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2004;2:747–765 [CrossRef][PubMed]
    [Google Scholar]
  16. Hobby GL, Meyer K, Chaffee E. Observations on the mechanism of action of penicillin. Exp Biol Med 1942;50:281–285 [CrossRef]
    [Google Scholar]
  17. Bigger J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet 1944;244:497–500 [CrossRef]
    [Google Scholar]
  18. Dw M, Persistence M. Yale J Biol Med 1958;30:257–291
    [Google Scholar]
  19. Sarathy J, Dartois V, Dick T, Gengenbacher M. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013;57:1648–1653 [CrossRef][PubMed]
    [Google Scholar]
  20. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol 2017;15:453–464 [CrossRef][PubMed]
    [Google Scholar]
  21. Mouton JM, Helaine S, Holden DW, Sampson SL. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology 2016;162:966–978 [CrossRef][PubMed]
    [Google Scholar]
  22. Conlon BP, Nakayasu ES, Fleck LE, Lafleur MD, Isabella VM et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 2013;503:365–370 [CrossRef][PubMed]
    [Google Scholar]
  23. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 2008;5:e75 [CrossRef][PubMed]
    [Google Scholar]
  24. Dhillon J, Fourie PB, Mitchison DA. Persister populations of Mycobacterium tuberculosis in sputum that grow in liquid but not on solid culture media. J Antimicrob Chemother 2014;69:437–440 [CrossRef][PubMed]
    [Google Scholar]
  25. Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornès P, Tailleux L et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence?. PLoS One 2006;1:e43 [CrossRef][PubMed]
    [Google Scholar]
  26. Agarwal P, Khan SR, Verma SC, Beg M, Singh K et al. Mycobacterium tuberculosis persistence in various adipose depots of infected mice and the effect of anti-tubercular therapy. Microbes Infect 2014;16:571–580 [CrossRef][PubMed]
    [Google Scholar]
  27. Agarwal P, Pandey P, Sarkar J, Krishnan MY. Mycobacterium tuberculosis can gain access to adipose depots of mice infected via the intra-nasal route and to lungs of mice with an infected subcutaneous fat implant. Microb Pathog 2016;93:32–37 [CrossRef][PubMed]
    [Google Scholar]
  28. Lipworth S, Hammond RJ, Baron VO, Hu Y, Coates A et al. Defining dormancy in mycobacterial disease. Tuberculosis 2016;99:131–142 [CrossRef][PubMed]
    [Google Scholar]
  29. Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL et al. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis 2011;91:146–154 [CrossRef][PubMed]
    [Google Scholar]
  30. Barer MR, Harwood CR. Bacterial viability and culturability. Adv Microb Physiol 1999;41:93–137[PubMed]
    [Google Scholar]
  31. Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 1983;155:768–775[PubMed]
    [Google Scholar]
  32. Gefen O, Balaban NQ. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 2009;33:704–717 [CrossRef][PubMed]
    [Google Scholar]
  33. Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 2011;14:593–598 [CrossRef][PubMed]
    [Google Scholar]
  34. Ma C, Sim S, Shi W, du L, Xing D et al. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett 2010;303:33–40 [CrossRef][PubMed]
    [Google Scholar]
  35. Jõers A, Kaldalu N, Tenson T. The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol 2010;192:3379–3384 [CrossRef][PubMed]
    [Google Scholar]
  36. Li Y, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 2007;51:2092–2099 [CrossRef][PubMed]
    [Google Scholar]
  37. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 2004;230:13–18 [CrossRef][PubMed]
    [Google Scholar]
  38. Hu Y, Coates AR. Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett 2005;243:117–124 [CrossRef][PubMed]
    [Google Scholar]
  39. Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 2000;4:796–806[PubMed]
    [Google Scholar]
  40. Rego EH, Audette RE, Rubin EJ. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 2017;546:153–157 [CrossRef][PubMed]
    [Google Scholar]
  41. Sakatos A, Babunovic GH, Chase MR, Dills A, Leszyk J et al. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Sci Adv 2018;4:eaao1478 [CrossRef][PubMed]
    [Google Scholar]
  42. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 2013;339:91–95 [CrossRef][PubMed]
    [Google Scholar]
  43. Yamamoto N, Isshiki R, Kawai Y, Tanaka D, Sekiguchi T et al. Stochastic expression of lactate dehydrogenase A induces Escherichia coli persister formation. J Biosci Bioeng 2018;126:30–37 [CrossRef][PubMed]
    [Google Scholar]
  44. Shi W, Zhang Y. PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 2010;65:1237–1242 [CrossRef][PubMed]
    [Google Scholar]
  45. Namugenyi SB, Aagesen AM, Elliott SR, Tischler AD. Mycobacterium tuberculosis PhoY Proteins Promote Persister Formation by Mediating Pst/SenX3-RegX3 Phosphate Sensing. MBio 2017;8: [CrossRef][PubMed]
    [Google Scholar]
  46. Brokaw AM, Eide BJ, Muradian M, Boster JM, Tischler AD. Mycobacterium smegmatis PhoU proteins have overlapping functions in phosphate signaling and are essential. Front Microbiol 2017;8:2523 [CrossRef][PubMed]
    [Google Scholar]
  47. Spoering AL, Vulic M, Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 2006;188:5136–5144 [CrossRef][PubMed]
    [Google Scholar]
  48. Girgis HS, Harris K, Tavazoie S. Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci USA 2012;109:12740–12745 [CrossRef][PubMed]
    [Google Scholar]
  49. Kieser KJ, Rubin EJ. How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 2014;12:550–562 [CrossRef][PubMed]
    [Google Scholar]
  50. Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci USA 2014;111:1132–1137 [CrossRef][PubMed]
    [Google Scholar]
  51. Fasani RA, Savageau MA. Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci USA 2013;110:E2528E2537 [CrossRef][PubMed]
    [Google Scholar]
  52. Sala A, Bordes P, Genevaux P. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 2014;6:1002–1020 [CrossRef][PubMed]
    [Google Scholar]
  53. Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP et al. Corrigendum: MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015;6:7273 [CrossRef][PubMed]
    [Google Scholar]
  54. Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S et al. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2018;46:11639–11655 [CrossRef][PubMed]
    [Google Scholar]
  55. Zhao JL, Liu W, Xie WY, Cao XD, Yuan L. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China. Infect Drug Resist 2018;11:345–358 [CrossRef][PubMed]
    [Google Scholar]
  56. Korch SB, Malhotra V, Contreras H, Clark-Curtiss JE. The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015;53:783–795 [CrossRef][PubMed]
    [Google Scholar]
  57. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 2011;108:13206–13211 [CrossRef][PubMed]
    [Google Scholar]
  58. Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009;5:e1000767 [CrossRef][PubMed]
    [Google Scholar]
  59. Sebastian J, Swaminath S, Nair RR, Jakkala K, Pradhan A et al. De novo emergence of genetically resistant mutants of mycobacterium tuberculosis from the persistence phase cells formed against antituberculosis drugs in vitro. Antimicrob Agents Chemother 2017;61: [CrossRef][PubMed]
    [Google Scholar]
  60. Debbia EA, Roveta S, Schito AM, Gualco L, Marchese A. Antibiotic persistence: the role of spontaneous DNA repair response. Microb Drug Resist 2001;7:335–342 [CrossRef][PubMed]
    [Google Scholar]
  61. Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe 2013;13:632–642 [CrossRef][PubMed]
    [Google Scholar]
  62. Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010;8:e1000317 [CrossRef][PubMed]
    [Google Scholar]
  63. Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 2009;5:e1000760 [CrossRef][PubMed]
    [Google Scholar]
  64. Boshoff HI, Reed MB, Barry CE, Mizrahi V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 2003;113:183–193 [CrossRef][PubMed]
    [Google Scholar]
  65. Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM. Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 2009;191:5881–5889 [CrossRef][PubMed]
    [Google Scholar]
  66. Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B et al. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 2007;189:531–539 [CrossRef][PubMed]
    [Google Scholar]
  67. Fung DK, Chan EW, Chin ML, Chan RC. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 2010;54:1082–1093 [CrossRef][PubMed]
    [Google Scholar]
  68. Bassett IM, Lun S, Bishai WR, Guo H, Kirman JR et al. Detection of inhibitors of phenotypically drug-tolerant Mycobacterium tuberculosis using an in vitro bactericidal screen. J Microbiol 2013;51:651–658 [CrossRef][PubMed]
    [Google Scholar]
  69. Lavelin I, Beer A, Kam Z, Rotter V, Oren M et al. Discovery of novel proteasome inhibitors using a high-content cell-based screening system. PLoS One 2009;4:e8503 [CrossRef][PubMed]
    [Google Scholar]
  70. Wang F, Sambandan D, Halder R, Wang J, Batt SM et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci USA 2013;110:E2510E2517 [CrossRef][PubMed]
    [Google Scholar]
  71. Gold B, Warrier T, Nathan C. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods Mol Biol 2015;1285:293–315 [CrossRef][PubMed]
    [Google Scholar]
  72. Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 1996;64:2062–2069[PubMed]
    [Google Scholar]
  73. Sohaskey CD, Voskuil MI. In vitro models that utilize hypoxia to induce non-replicating persistence in Mycobacteria. Methods Mol Biol 2015;1285:201–213 [CrossRef][PubMed]
    [Google Scholar]
  74. Betts JC, Lukey PT, Robb LC, Mcadam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002;43:717–731 [CrossRef][PubMed]
    [Google Scholar]
  75. Grant SS, Kawate T, Nag PP, Silvis MR, Gordon K et al. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol 2013;8:2224–2234 [CrossRef][PubMed]
    [Google Scholar]
  76. Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M et al. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 2013;8:e68942 [CrossRef][PubMed]
    [Google Scholar]
  77. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2007;51:1380–1385 [CrossRef][PubMed]
    [Google Scholar]
  78. Gold B, Roberts J, Ling Y, Quezada LL, Glasheen J et al. Rapid, semiquantitative assay to discriminate among compounds with activity against replicating or Nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015;59:6521–6538 [CrossRef][PubMed]
    [Google Scholar]
  79. Piccaro G, Giannoni F, Filippini P, Mustazzolu A, Fattorini L. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions. Antimicrob Agents Chemother 2013;57:1428–1433 [CrossRef][PubMed]
    [Google Scholar]
  80. Piccaro G, Poce G, Biava M, Giannoni F, Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J Antibiot 2015;68:711–714 [CrossRef][PubMed]
    [Google Scholar]
  81. Iacobino A, Piccaro G, Giannoni F, Mustazzolu A, Fattorini L. Mycobacterium tuberculosis Is Selectively Killed by Rifampin and Rifapentine in Hypoxia at Neutral pH. Antimicrob Agents Chemother 2017;61: [CrossRef][PubMed]
    [Google Scholar]
  82. Filippini P, Iona E, Piccaro G, Peyron P, Neyrolles O et al. Activity of drug combinations against dormant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2010;54:2712–2715 [CrossRef][PubMed]
    [Google Scholar]
  83. Villar R, Vicente E, Solano B, Pérez-Silanes S, Aldana I et al. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J Antimicrob Chemother 2008;62:547–554 [CrossRef][PubMed]
    [Google Scholar]
  84. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 2012;7:1190–1197 [CrossRef][PubMed]
    [Google Scholar]
  85. Bryk R, Gold B, Venugopal A, Singh J, Samy R et al. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 2008;3:137–145 [CrossRef][PubMed]
    [Google Scholar]
  86. Sridevi JP, Suryadevara P, Janupally R, Sridhar J, Soni V et al. Identification of potential Mycobacterium tuberculosis topoisomerase I inhibitors: a study against active, dormant and resistant tuberculosis. Eur J Pharm Sci 2015;72:81–92 [CrossRef][PubMed]
    [Google Scholar]
  87. Shirude PS, Madhavapeddi P, Tucker JA, Murugan K, Patil V et al. Aminopyrazinamides: novel and specific GyrB inhibitors that kill replicating and nonreplicating Mycobacterium tuberculosis. ACS Chem Biol 2013;8:519–523 [CrossRef][PubMed]
    [Google Scholar]
  88. Samala G, Devi PB, Saxena S, Meda N, Yogeeswari P et al. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 2016;24:1298–1307 [CrossRef][PubMed]
    [Google Scholar]
  89. Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 2002;8:1171–1174 [CrossRef][PubMed]
    [Google Scholar]
  90. Sambandamurthy VK, Derrick SC, Jalapathy KV, Chen B, Russell RG et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 2005;73:1196–1203 [CrossRef][PubMed]
    [Google Scholar]
  91. Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S et al. Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Bioorg Med Chem 2014;22:1938–1947 [CrossRef][PubMed]
    [Google Scholar]
  92. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis 1999;3:S231–279[PubMed]
    [Google Scholar]
  93. Somner AR. Short-course chemotherapy in pulmonary tuberculosis. A controlled trial by the British Thoracic Association (third report). Lancet 1980;1:1182–1183[PubMed]
    [Google Scholar]
  94. Mitchison DA. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 1985;66:219–225 [CrossRef][PubMed]
    [Google Scholar]
  95. Mcdermott W, Tompsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc 1954;70:748–754[PubMed]
    [Google Scholar]
  96. Wade MM, Zhang Y. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol 2004;53:769–773 [CrossRef][PubMed]
    [Google Scholar]
  97. Peterson ND, Rosen BC, Dillon NA, Baughn AD. Uncoupling environmental ph and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015;59:7320–7326 [CrossRef][PubMed]
    [Google Scholar]
  98. Tarshis MS, Weed WA. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc 1953;67:391–395[PubMed]
    [Google Scholar]
  99. Niu H, Ma C, Cui P, Shi W, Zhang S et al. Identification of drug candidates that enhance pyrazinamide activity from a clinical compound library. Emerg Microbes Infect 2017;6:e27 [CrossRef][PubMed]
    [Google Scholar]
  100. Zhang M, Sala C, Dhar N, Vocat A, Sambandamurthy VK et al. In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014;58:3217–3223 [CrossRef][PubMed]
    [Google Scholar]
  101. Rosenthal IM, Tasneen R, Peloquin CA, Zhang M, Almeida D et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother 2012;56:4331–4340 [CrossRef][PubMed]
    [Google Scholar]
  102. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 2014;371:1577–1587 [CrossRef][PubMed]
    [Google Scholar]
  103. Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mb L et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med 2014;371:1588–1598 [CrossRef][PubMed]
    [Google Scholar]
  104. Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med 2014;371:1599–1608 [CrossRef][PubMed]
    [Google Scholar]
  105. Churchyard GJ, Fielding KL, Grant AD. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med 2014;370:301–310 [CrossRef][PubMed]
    [Google Scholar]
  106. Maiga M, Agarwal N, Ammerman NC, Gupta R, Guo H et al. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One 2012;7:e30749 [CrossRef][PubMed]
    [Google Scholar]
  107. Napier RJ, Rafi W, Cheruvu M, Powell KR, Zaunbrecher MA et al. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 2011;10:475–485 [CrossRef][PubMed]
    [Google Scholar]
  108. Zumla A, Rao M, Dodoo E, Maeurer M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med 2016;14:89 [CrossRef][PubMed]
    [Google Scholar]
  109. Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci USA 2012;109:12147–12152 [CrossRef][PubMed]
    [Google Scholar]
  110. Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 2003;185:1942–1950 [CrossRef][PubMed]
    [Google Scholar]
  111. Vilchèze C, Hartman T, Weinrick B, Jain P, Weisbrod TR et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2017;114:4495–4500 [CrossRef][PubMed]
    [Google Scholar]
  112. Vilchèze C, Hartman T, Weinrick B, Jacobs WR. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 2013;4:4 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000760
Loading
/content/journal/micro/10.1099/mic.0.000760
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error