1887

Abstract

Salmonella enterica is a human pathogen that can produce filamentous cells in response to environmental stress. The molecular mediators and biosynthetic pathways that contribute to the formation of filamentous cells (>10 µm in length) during osmotic stress are mostly unknown. The comparison of filamentous and non-filamentous cells in this study was aided by the use of a filtration step to separate cell types. Osmotic stress caused an efflux of phosphate from cells, and the addition of phosphate and a carbohydrate to Luria broth with 7 % NaCl (LB-7NaCl) significantly increased the proportion of filamentous cells in the population (58 %). In addition to direct measurements of intracellular and extracellular phosphate concentrations, the relative abundance of the iraP transcript that is induced by phosphate limitation was monitored. Non-filamentous cells had a greater relative abundance of iraP transcript than filamentous cells. IraP also affects the stability of RpoS, which regulates the general stress regulon, and was detected in non-filamentous cells but not filamentous cells. Markers of metabolic pathways for the production of acetyl-CoA (pflB, encoding for pyruvate formate lyase) and fatty acids (fabH) that are essential to membrane biosynthesis were found in greater abundance in filamentous cells than non-filamentous cells. There were no differences in the DNA, protein and biomass levels in filamentous and non-filamentous cells after 48 h of incubation, although the filamentous cells produced significantly (P<0.05) more acetate. This study found that phosphate and carbohydrate enhanced the formation of filamentous cells during osmotic stress, and there were differences in key regulatory elements and markers of metabolic pathways in filamentous and non-filamentous S. enterica.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000731
2018-10-16
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/12/1503.html?itemId=/content/journal/micro/10.1099/mic.0.000731&mimeType=html&fmt=ahah

References

  1. Chauhan A, Madiraju MV, Fol M, Lofton H, Maloney E et al. Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. J Bacteriol 2006;188:1856–1865 [CrossRef][PubMed]
    [Google Scholar]
  2. Horvath DJ, Li B, Casper T, Partida-Sanchez S, Hunstad DA et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect 2011;13:426–437 [CrossRef][PubMed]
    [Google Scholar]
  3. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 2008;6:162–168 [CrossRef][PubMed]
    [Google Scholar]
  4. Rosenberger CM, Finlay BB. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 2002;277:18753–18762 [CrossRef][PubMed]
    [Google Scholar]
  5. Díaz-Visurraga J, García A, Cárdenas G. Lethal effect of chitosan-Ag (I) films on Staphylococcus aureus as evaluated by electron microscopy. J Appl Microbiol 2010;108:633–646 [CrossRef][PubMed]
    [Google Scholar]
  6. Fonseca AS, Presta GA, Geller M, Paoli F. Low intensity infrared laser induces filamentation in Escherichia coli cells. Laser Phys 2011;21:1829–1837 [CrossRef]
    [Google Scholar]
  7. Giotis ES, Blair IS, McDowell DA. Morphological changes in Listeria monocytogenes subjected to sublethal alkaline stress. Int J Food Microbiol 2007;120:250–258 [CrossRef][PubMed]
    [Google Scholar]
  8. Ingham CJ, Beerthuyzen M, van Hylckama Vlieg J. Population heterogeneity of Lactobacillus plantarum WCFS1 microcolonies in response to and recovery from acid stress. Appl Environ Microbiol 2008;74:7750–7758 [CrossRef][PubMed]
    [Google Scholar]
  9. Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 2013;165:97–110 [CrossRef][PubMed]
    [Google Scholar]
  10. Kawarai T, Wachi M, Ogino H, Furukawa S, Suzuki K et al. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Appl Microbiol Biotechnol 2004;64:255–262 [CrossRef][PubMed]
    [Google Scholar]
  11. Lamothe J, Huynh KK, Grinstein S, Valvano MA. Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 2007;9:40–53 [CrossRef][PubMed]
    [Google Scholar]
  12. Mattick KL, Jørgensen F, Legan JD, Cole MB, Porter J et al. Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity. Appl Environ Microbiol 2000;66:1274–1279 [CrossRef][PubMed]
    [Google Scholar]
  13. Pratt ZL, Chen B, Czuprynski CJ, Wong AC, Kaspar CW. Characterization of osmotically induced filaments of Salmonella enterica. Appl Environ Microbiol 2012;78:6704–6713 [CrossRef][PubMed]
    [Google Scholar]
  14. Mattick KL, Rowbury RJ, Humphrey TJ. Morphological changes to Escherichia coli O157:H7, commensal E. coli and Salmonella spp in response to marginal growth conditions, with special reference to mildly stressing temperatures. Sci Prog 2003;86:103–113 [CrossRef][PubMed]
    [Google Scholar]
  15. Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 2008;47:3225–3234 [CrossRef][PubMed]
    [Google Scholar]
  16. Gunawan C, Teoh WY, Ricardo, Marquis CP, Amal R. Zinc oxide nanoparticles induce cell filamentation in Escherichia coli. Part Syst Charact 2013;30:375–380 [CrossRef]
    [Google Scholar]
  17. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004;305:1629–1631 [CrossRef][PubMed]
    [Google Scholar]
  18. Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 2008;410:147–155 [CrossRef][PubMed]
    [Google Scholar]
  19. Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM et al. Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc Natl Acad Sci USA 2015;112:178–183 [CrossRef][PubMed]
    [Google Scholar]
  20. Greenwood D, O'Grady F. Comparison of the responses of Escherichia coli and proteus mirabilis to seven beta-lactam antibodies. J Infect Dis 1973;128:211–222 [CrossRef][PubMed]
    [Google Scholar]
  21. Zak O, Kradolfer F. Effects of subminimal inhibitory concentrations of antibiotics in experimental infections. Rev Infect Dis 1979;1:862–879 [CrossRef][PubMed]
    [Google Scholar]
  22. Newman EB, Budman LI, Chan EC, Greene RC, Lin RT et al. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol 1998;180:3614–3619[PubMed]
    [Google Scholar]
  23. Paek KH, Walker GC. Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 1987;169:283–290 [CrossRef][PubMed]
    [Google Scholar]
  24. Sánchez-Gorostiaga A, Palacios P, Martínez-Arteaga R, Sánchez M, Casanova M et al. Life without division: physiology of Escherichia coli FtsZ-deprived filaments. MBio 2016;7:1–10 [CrossRef][PubMed]
    [Google Scholar]
  25. Sites J. Phosphatidylserine syntetase mutants of Escherichia coli. J Biol Chem 1976;251:3242–3249
    [Google Scholar]
  26. Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci USA 2006;103:19884–19889 [CrossRef][PubMed]
    [Google Scholar]
  27. Little JW, Mount DW. The SOS regulatory system of Escherichia coli. Cell 1982;29:11–22 [CrossRef][PubMed]
    [Google Scholar]
  28. Irazoki O, Aranda J, Zimmermann T, Campoy S, Barbé J et al. Molecular interaction and cellular location of RecA and chew proteins in Salmonella enterica during SOS response and their implication in swarming. Front Microbiol 2016;7:1–15 [CrossRef][PubMed]
    [Google Scholar]
  29. Smirnova GV, Tyulenev AV, Muzyka NG, Peters MA, Oktyabrsky ON. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli. Res Microbiol 2017;168:64–73 [CrossRef][PubMed]
    [Google Scholar]
  30. Walker GC. SOS-regulated proteins in translesion DNA synthesis and mutagenesis. Trends Biochem Sci 1995;20:416–420 [CrossRef][PubMed]
    [Google Scholar]
  31. Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009;66:82–93 [CrossRef][PubMed]
    [Google Scholar]
  32. Bi E, Lutkenhaus J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 1993;175:1118–1125 [CrossRef][PubMed]
    [Google Scholar]
  33. Mizusawa S, Gottesman S. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci USA 1983;80:358–362 [CrossRef][PubMed]
    [Google Scholar]
  34. Humphrey S, Macvicar T, Stevenson A, Roberts M, Humphrey TJ et al. SulA-induced filamentation in Salmonella enterica serovar typhimurium: effects on SPI-1 expression and epithelial infection. J Appl Microbiol 2011;111:185–196 [CrossRef][PubMed]
    [Google Scholar]
  35. Marathe SA, Kumar R, Ajitkumar P, Nagaraja V, Chakravortty D. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J Antimicrob Chemother 2013;68:139–152 [CrossRef][PubMed]
    [Google Scholar]
  36. Gill ON, Sockett PN, Bartlett CL, Vaile MS, Rowe B et al. Outbreak of Salmonella napoli infection caused by contaminated chocolate bars. Lancet 1983;1:574–577[PubMed]
    [Google Scholar]
  37. Rowe B, Begg NT, Hutchinson DN, Dawkins HC, Gilbert RJ et al. Salmonella ealing infections associated with consumption of infant dried milk. Lancet 1987;2:900–903[PubMed]
    [Google Scholar]
  38. Piao Z, Sze CC, Barysheva O, Iida K, Yoshida S. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 2006;72:1613–1622 [CrossRef][PubMed]
    [Google Scholar]
  39. Stackhouse RR, Faith NG, Kaspar CW, Czuprynski CJ, Wong AC. Survival and virulence of Salmonella enterica serovar enteritidis filaments induced by reduced water activity. Appl Environ Microbiol 2012;78:2213–2220 [CrossRef][PubMed]
    [Google Scholar]
  40. Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA 2004;101:2422–2427 [CrossRef][PubMed]
    [Google Scholar]
  41. Shiroda M, Pratt ZL, Döpfer D, Wong AC, Kaspar CW. RpoS impacts the lag phase of Salmonella enterica during osmotic stress. FEMS Microbiol Lett 2014;357:195–200 [CrossRef][PubMed]
    [Google Scholar]
  42. Baykov AA, Evtushenko OA, Avaeva SM. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 1988;171:266–270 [CrossRef][PubMed]
    [Google Scholar]
  43. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE. A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 1991;192:112–116 [CrossRef][PubMed]
    [Google Scholar]
  44. Pratt ZL, Shiroda M, Stasic AJ, Lensmire J, Kaspar CW et al. Osmotic and dessication tolerance in Escherichia coli O157:H7 and Salmonella enterica requires rpoS (sigma 38). In De Brujin FJ. (editor) Stress and Environmental Control Hoboken, NJ: John Wiley and Sons; 2016; pp.716–724
    [Google Scholar]
  45. Metris A, George SM, Mulholland F, Carter AT, Baranyi J. Metabolic shift of Escherichia coli under salt stress in the presence of glycine betaine. Appl Environ Microbiol 2014;80:4745–4756 [CrossRef][PubMed]
    [Google Scholar]
  46. Addinall SG, Bi E, Lutkenhaus J. FtsZ ring formation in fts mutants. J Bacteriol 1996;178:3877–3884 [CrossRef][PubMed]
    [Google Scholar]
  47. Weber A, Kögl SA, Jung K. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 2006;188:7165–7175 [CrossRef][PubMed]
    [Google Scholar]
  48. Begg KJ, Hatfull GF, Donachie WD. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell division gene ftsQ. J Bacteriol 1980;144:435–437[PubMed]
    [Google Scholar]
  49. Chang YY, Wang AY, Cronan JE. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol Microbiol 1994;11:1019–1028 [CrossRef][PubMed]
    [Google Scholar]
  50. Tsay JT, Oh W, Larson TJ, Jackowski S, Rock CO. Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 1992;267:6807–6814[PubMed]
    [Google Scholar]
  51. Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 1989;53:121–147[PubMed]
    [Google Scholar]
  52. de Jong AE, Rombouts FM, Beumer RR. Behavior of Clostridium perfringens at low temperatures. Int J Food Microbiol 2004;97:71–80 [CrossRef][PubMed]
    [Google Scholar]
  53. Uygur A, Kargı F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzyme Microb Technol 2004;34:313–318 [CrossRef]
    [Google Scholar]
  54. Bougdour A, Gottesman S. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci USA 2007;104:12896–12901 [CrossRef][PubMed]
    [Google Scholar]
  55. Bougdour A, Wickner S, Gottesman S. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev 2006;20:884–897 [CrossRef][PubMed]
    [Google Scholar]
  56. Spira B, Silberstein N, Yagil E. Guanosine 3',5'-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol 1995;177:4053–4058 [CrossRef][PubMed]
    [Google Scholar]
  57. My L, Rekoske B, Lemke JJ, Viala JP, Gourse RL et al. Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013;195:3784–3795 [CrossRef][PubMed]
    [Google Scholar]
  58. Powell BS, Court DL. Control of ftsZ expression, cell division, and glutamine metabolism in Luria-Bertani medium by the alarmone ppGpp in Escherichia coli. J Bacteriol 1998;180:1053–1062[PubMed]
    [Google Scholar]
  59. Knappe J, Sawers G. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 1990;6:383–398[PubMed]
    [Google Scholar]
  60. Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 1989;63:223–234
    [Google Scholar]
  61. Baranyi J, Metris A, George SM. Bacterial economics: adaptation to stress conditions via stage-wise changes in the response mechanism. Food Microbiol 2015;45:162–166 [CrossRef][PubMed]
    [Google Scholar]
  62. Goel A, Wortel MT, Molenaar D, Teusink B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol Lett 2012;34:2147–2160 [CrossRef][PubMed]
    [Google Scholar]
  63. Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011;65:189–213 [CrossRef][PubMed]
    [Google Scholar]
  64. Magnusson LU, Farewell A, Nyström T. ppGpp: a global regulator in Escherichia coli. Trends Microbiol 2005;13:236–242 [CrossRef][PubMed]
    [Google Scholar]
  65. Yamaguchi T, Iida K, Shiota S, Nakayama H, Yoshida S. Filament formation of Salmonella Paratyphi A accompanied by FtsZ assembly impairment and low level ppGpp. Can J Microbiol 2015;61:955–964 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000731
Loading
/content/journal/micro/10.1099/mic.0.000731
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error