1887

Abstract

The principal mechanism of reducing sulfur into organic compounds is via the synthesis of l-cysteine. Cysteine is used for protein and glutathione synthesis, as well as being the primary sulfur source for a variety of other molecules, such as biotin, coenzyme A, lipoic acid and more. Glutathione and other cysteine derivatives are important for protection against the oxidative stress that pathogenic bacteria such as Neisseria gonorrhoeae and Neisseria meningitidis encounter during infection. With the alarming rise of antibiotic-resistant strains of N. gonorrhoeae, the development of inhibitors for the future treatment of this disease is critical, and targeting cysteine biosynthesis enzymes could be a promising approach for this. Little is known about the transport of sulfate and thiosulfate and subsequent sulfate reduction and incorporation into cysteine in Neisseria species. In this review we investigate cysteine biosynthesis within Neisseria species and examine the differences between species and with other bacteria. Neisseria species exhibit different arrangements of cysteine biosynthesis genes and have slight differences in how they assimilate sulfate and synthesize cysteine, while, most interestingly, N. gonorrhoeae by virtue of a genome deletion, lacks the ability to reduce sulfate to bisulfide for incorporation into cysteine, and as such uses the thiosulfate uptake pathway for the synthesis of cysteine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000728
2018-10-11
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/12/1471.html?itemId=/content/journal/micro/10.1099/mic.0.000728&mimeType=html&fmt=ahah

References

  1. Campanini B, Pieroni M, Raboni S, Bettati S, Benoni R et al. Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem 2015;22:187–213 [CrossRef][PubMed]
    [Google Scholar]
  2. Poyraz O, Jeankumar VU, Saxena S, Schnell R, Haraldsson M et al. Structure-guided design of novel thiazolidine inhibitors of O-acetyl serine sulfhydrylase from Mycobacterium tuberculosis. J Med Chem 2013;56:6457–6466 [CrossRef][PubMed]
    [Google Scholar]
  3. Jean Kumar VU, Poyraz Ö, Saxena S, Schnell R, Yogeeswari P et al. Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorg Med Chem Lett 2013;23:1182–1186 [CrossRef][PubMed]
    [Google Scholar]
  4. Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E et al. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 2013;8:e77558 [CrossRef][PubMed]
    [Google Scholar]
  5. Salsi E, Bayden AS, Spyrakis F, Amadasi A, Campanini B et al. Design of O-acetylserine sulfhydrylase inhibitors by mimicking nature. J Med Chem 2010;53:345–356 [CrossRef][PubMed]
    [Google Scholar]
  6. Fontán P, Aris V, Ghanny S, Soteropoulos P, Smith I. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 2008;76:717–725 [CrossRef][PubMed]
    [Google Scholar]
  7. Turnbull AL, Surette MG. L-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology 2008;154:3410–3419 [CrossRef][PubMed]
    [Google Scholar]
  8. Sharip A, Sorvillo F, Redelings MD, Mascola L, Wise M et al. Population-based analysis of meningococcal disease mortality in the United States: 1990–2002. Pediatr Infect Dis J 2006;25:191–194 [CrossRef][PubMed]
    [Google Scholar]
  9. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease. N Engl J Med 2001;344:1378–1388 [CrossRef][PubMed]
    [Google Scholar]
  10. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med 2017;14:e1002344 [CrossRef][PubMed]
    [Google Scholar]
  11. Guédon E, Martin-Verstraete I. Cysteine metabolism and its regulation in bacteria. In Wendisch VF. (editor) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering Berlin, Heidelberg: Springer Berlin Heidelberg; 2007; pp.195–218
    [Google Scholar]
  12. Kertesz MA. Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 2001;152:279–290 [CrossRef][PubMed]
    [Google Scholar]
  13. Kredich NM. Biosynthesis of cysteine. EcoSal Plus 2008;3: [CrossRef][PubMed]
    [Google Scholar]
  14. Abrams AJ, Trees DL, Nicholas RA. Complete genome sequences of three Neisseria gonorrhoeae laboratory reference strains, determined using pacbio single-molecule real-time technology. Genome Announc 2015;3:e01052-15 [CrossRef][PubMed]
    [Google Scholar]
  15. Le Faou A. Sulphur nutrition and metabolism in various species of Neisseria. Ann Microbiol 1984;135B:3–11[PubMed]
    [Google Scholar]
  16. Joseph B, Schneiker-Bekel S, Schramm-Glück A, Blom J, Claus H et al. Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol 2010;192:5363–5377 [CrossRef][PubMed]
    [Google Scholar]
  17. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E et al. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: from basic research to vaccine development. Ann N Y Acad Sci 2002;975:202–216[PubMed]
    [Google Scholar]
  18. Dietrich G, Kurz S, Hübner C, Aepinus C, Theiss S et al. Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 2003;185:155–164 [CrossRef][PubMed]
    [Google Scholar]
  19. Mansilla MC, de Mendoza D. L-cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene coding for phosphoadenylylsulfate sulfotransferase. J Bacteriol 1997;179:976–981 [CrossRef][PubMed]
    [Google Scholar]
  20. Rusniok C, Vallenet D, Floquet S, Ewles H, Mouzé-Soulama C et al. NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. Genome Biol 2009;10:R110 [CrossRef][PubMed]
    [Google Scholar]
  21. Berndt C, Lillig CH, Wollenberg M, Bill E, Mansilla MC et al. Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J Biol Chem 2004;279:7850–7855 [CrossRef][PubMed]
    [Google Scholar]
  22. Bick JA, Dennis JJ, Zylstra GJ, Nowack J, Leustek T. Identification of a new class of 5'-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 2000;182:135–142 [CrossRef][PubMed]
    [Google Scholar]
  23. Williams SJ, Senaratne RH, Mougous JD, Riley LW, Bertozzi CR. 5'-adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 2002;277:32606–32615 [CrossRef][PubMed]
    [Google Scholar]
  24. Johansson P, Hederstedt L. Organization of genes for tetrapyrrole biosynthesis in gram–positive bacteria. Microbiology 1999;145:529–538 [CrossRef][PubMed]
    [Google Scholar]
  25. Guillouard I, Auger S, Hullo MF, Chetouani F, Danchin A et al. Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 2002;184:4681–4689 [CrossRef][PubMed]
    [Google Scholar]
  26. Mansilla MC, de Mendoza D. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 2000;146:815–821 [CrossRef][PubMed]
    [Google Scholar]
  27. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 2000;287:1809–1815 [CrossRef][PubMed]
    [Google Scholar]
  28. Piet JR, Huis In 't Veld RA, van Schaik BD, van Kampen AH, Baas F et al. Genome sequence of Neisseria meningitidis serogroup B strain H44/76. J Bacteriol 2011;193:2371–2372 [CrossRef][PubMed]
    [Google Scholar]
  29. Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci USA 2011;108:4494–4499 [CrossRef][PubMed]
    [Google Scholar]
  30. Port JL, Devoe IW, Archibald FS. Sulphur acquisition by Neisseria meningitidis. Can J Microbiol 1984;30:1453–1457 [CrossRef][PubMed]
    [Google Scholar]
  31. Droux M, Ruffet ML, Douce R, Job D. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem 1998;255:235–245 [CrossRef][PubMed]
    [Google Scholar]
  32. Olsen LR, Huang B, Vetting MW, Roderick SL. Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 2004;43:6013–6019 [CrossRef][PubMed]
    [Google Scholar]
  33. Becker MA, Tomkins GM. Pleiotrophy in a cysteine-requiring mutant of Samonella typhimurium resulting from altered protein-protein interaction. J Biol Chem 1969;244:6023–6030[PubMed]
    [Google Scholar]
  34. Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL et al. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 2005;14:2115–2124 [CrossRef][PubMed]
    [Google Scholar]
  35. Tai CH, Nalabolu SR, Jacobson TM, Minter DE, Cook PF. Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 1993;32:6433–6442 [CrossRef][PubMed]
    [Google Scholar]
  36. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–858 [CrossRef][PubMed]
    [Google Scholar]
  37. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016;44:D279–D285 [CrossRef][PubMed]
    [Google Scholar]
  38. Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 2014;42:10579–10595 [CrossRef][PubMed]
    [Google Scholar]
  39. Senaratne RH, de Silva AD, Williams SJ, Mougous JD, Reader JR et al. 5'-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 2006;59:1744–1753 [CrossRef][PubMed]
    [Google Scholar]
  40. Turnbull AL, Surette MG. Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 2010;161:643–650 [CrossRef][PubMed]
    [Google Scholar]
  41. Capel E, Zomer AL, Nussbaumer T, Bole C, Izac B et al. Comprehensive identification of meningococcal genes and small noncoding RNAs required for host cell colonization. MBio 2016;7:e01173-16 [CrossRef][PubMed]
    [Google Scholar]
  42. Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP et al. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006;70:344–361 [CrossRef][PubMed]
    [Google Scholar]
  43. Santi-Rocca J, Smith S, Weber C, Pineda E, Hon CC et al. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS One 2012;7:e31777 [CrossRef][PubMed]
    [Google Scholar]
  44. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 2003;198:693 [CrossRef][PubMed]
    [Google Scholar]
  45. Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011;12:R127 [CrossRef][PubMed]
    [Google Scholar]
  46. McClure R, Nudel K, Massari P, Tjaden B, Su X et al. The gonococcal transcriptome during infection of the lower genital tract in women. PLoS One 2015;10:e0133982 [CrossRef][PubMed]
    [Google Scholar]
  47. Hryniewicz MM, Kredich NM. Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol 1994;176:3673–3682 [CrossRef][PubMed]
    [Google Scholar]
  48. Hryniewicz MM, Kredich NM. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 1991;173:5876–5886 [CrossRef][PubMed]
    [Google Scholar]
  49. Ostrowski J, Kredich NM. Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter. J Bacteriol 1991;173:2212–2218 [CrossRef][PubMed]
    [Google Scholar]
  50. Ostrowski J, Kredich NM. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine. J Bacteriol 1989;171:130–140 [CrossRef][PubMed]
    [Google Scholar]
  51. Nagpal I, Raj I, Subbarao N, Gourinath S. Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica. PLoS One 2012;7:e30305 [CrossRef][PubMed]
    [Google Scholar]
  52. Brown SA, Palmer KL, Whiteley M. Revisiting the host as a growth medium. Nat Rev Microbiol 2008;6:657–666 [CrossRef][PubMed]
    [Google Scholar]
  53. Roop RM, Gaines JM, Anderson ES, Caswell CC, Martin DW. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 2009;198:221–238 [CrossRef][PubMed]
    [Google Scholar]
  54. McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016;74:ftw068 [CrossRef][PubMed]
    [Google Scholar]
  55. van de Waterbeemd B, Zomer G, van den Ijssel J, van Keulen L, Eppink MH et al. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS One 2013;8:e54314 [CrossRef][PubMed]
    [Google Scholar]
  56. Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B et al. Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 2000;38:543–551 [CrossRef][PubMed]
    [Google Scholar]
  57. Bruno A, Amori L, Costantino G. Computational insights into the mechanism of inhibition of oass-a by a small molecule inhibitor. Mol Inform 2013;32:447–457 [CrossRef][PubMed]
    [Google Scholar]
  58. Bulut H, Moniot S, Licht A, Scheffel F, Gathmann S et al. Crystal structures of two solute receptors for L-cystine and L-cysteine, respectively, of the human pathogen Neisseria gonorrhoeae. J Mol Biol 2012;415:560–572 [CrossRef][PubMed]
    [Google Scholar]
  59. Archibald FS, Duong MN. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 1986;51:631–641[PubMed]
    [Google Scholar]
  60. Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC et al. Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 2002;46:3348–3355 [CrossRef][PubMed]
    [Google Scholar]
  61. Sareen D, Newton GL, Fahey RC, Buchmeier NA. Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 2003;185:6736–6740 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000728
Loading
/content/journal/micro/10.1099/mic.0.000728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error