1887

Abstract

The outer membrane proteins of the pathogen are targeted to understand host–pathogen interactions and are central to the development of diagnostics. We report that Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 contains a gene LIC13341 that encodes a conserved outer membrane/periplasmic lipoprotein. The gene LIC13341 was cloned into expression vector pET28a and the recombinant LIC13341 (r-LIC13341) protein was purified from Escherichia coli BL21 (DE3) using affinity chromatography. The secondary structure of the purified r-LIC13341 protein featured a typical β-strand when observed by circular dichroism spectroscopy. Immunoblotting using antibodies raised against r-LIC13341 in BALB/c mice can detect LIC13341 expression in the Leptospira lysates and suggested that antigen LIC13341 is immunogenic. Phase separation and protease assays determined that LIC13341 is a surface-exposed outer membrane protein of Leptospira. The r-LIC13341 can bind to a wide spectrum of host extracellular matrices (ECMs). The specific adherence of Leptospira to laminin and hyaluronic acid of the ECM was competitively inhibited in the presence of r-LIC13341. The enzyme-linked immunosorbent assay and immunoblot performed using human or bovine leptospirosis serum (n=50) recognized r-LIC13341, suggesting that LIC13341 is expressed in diverse hosts during Leptospira infection. Thus, the present finding suggests that the Leptospira LIC13341 antigen is a versatile outer membrane adhesin of diagnostic importance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000685
2018-07-03
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/8/1023.html?itemId=/content/journal/micro/10.1099/mic.0.000685&mimeType=html&fmt=ahah

References

  1. Andersen-Ranberg EU, Pipper C, Jensen PM. Global patterns of Leptospira prevalence in vertebrate reservoir hosts. J Wildl Dis 2016; 52:468–477 [View Article][PubMed]
    [Google Scholar]
  2. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 2015; 9:e0003898 [View Article][PubMed]
    [Google Scholar]
  3. Torgerson PR, Hagan JE, Costa F, Calcagno J, Kane M et al. Global burden of leptospirosis: estimated in terms of disability adjusted life years. PLoS Negl Trop Dis 2015; 9:e0004122 [View Article][PubMed]
    [Google Scholar]
  4. Victoriano AF, Smythe LD, Gloriani-Barzaga N, Cavinta LL, Kasai T et al. Leptospirosis in the Asia Pacific region. BMC Infect Dis 2009; 9:147 [View Article][PubMed]
    [Google Scholar]
  5. Pereira PRM, Fernandes LGV, de Souza GO, Vasconcellos SA, Heinemann MB et al. Multifunctional and redundant roles of Leptospira interrogans proteins in bacterial-adhesion and fibrin clotting inhibition. Int J Med Microbiol 2017; 307:297–310 [View Article][PubMed]
    [Google Scholar]
  6. Silva LP, Fernandes LG, Vieira ML, de Souza GO, Heinemann MB et al. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040 [View Article][PubMed]
    [Google Scholar]
  7. Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH et al. Leptospiral extracellular matrix adhesins as mediators of pathogen-host interactions. FEMS Microbiol Lett 2014; 352:129–139 [View Article][PubMed]
    [Google Scholar]
  8. Guo BP, Brown EL, Dorward DW, Rosenberg LC, Höök M. Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol 1998; 30:711–723 [View Article][PubMed]
    [Google Scholar]
  9. Parveen N, Caimano M, Radolf JD, Leong JM. Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Mol Microbiol 2003; 47:1433–1444 [View Article][PubMed]
    [Google Scholar]
  10. Parveen N, Leong JM. Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35:1220–1234 [View Article][PubMed]
    [Google Scholar]
  11. Cameron CE. Identification of a Treponema pallidum laminin-binding protein. Infect Immun 2003; 71:2525–2533 [View Article][PubMed]
    [Google Scholar]
  12. Cameron CE, Brown EL, Kuroiwa JM, Schnapp LM, Brouwer NL. Treponema pallidum fibronectin-binding proteins. J Bacteriol 2004; 186:7019–7022 [View Article][PubMed]
    [Google Scholar]
  13. Kao WA, Pětrošová H, Ebady R, Lithgow KV, Rojas P et al. Identification of Tp0751 (pallilysin) as a Treponema pallidum vascular adhesin by heterologous expression in the Lyme disease spirochete. Sci Rep 2017; 7:1538 [View Article][PubMed]
    [Google Scholar]
  14. Ke W, Molini BJ, Lukehart SA, Giacani L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 2015; 9:e0003662 [View Article][PubMed]
    [Google Scholar]
  15. Weissmann B, Meyer K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord1,2. J Am Chem Soc 1954; 76:1753–1757 [View Article]
    [Google Scholar]
  16. Wells TJ, McNeilly TN, Totsika M, Mahajan A, Gally DL et al. The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol 2009; 11:1803–1814 [View Article][PubMed]
    [Google Scholar]
  17. Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 2008; 76:1848–1857 [View Article][PubMed]
    [Google Scholar]
  18. Pinne M, Choy HA, Haake DA. The OmpL37 surface-exposed protein is expressed by pathogenic Leptospira during infection and binds skin and vascular elastin. PLoS Negl Trop Dis 2010; 4:e815 [View Article][PubMed]
    [Google Scholar]
  19. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783–795 [View Article][PubMed]
    [Google Scholar]
  20. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999; 24:34–35 [View Article][PubMed]
    [Google Scholar]
  21. Yu C-S, Chen Y-C, Lu C-H, Hwang J-K. Prediction of protein subcellular localization. Proteins 2006; 64:643–651 [View Article]
    [Google Scholar]
  22. Yu C-S, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004; 13:1402–1406 [View Article][PubMed]
    [Google Scholar]
  23. Cullen PA, Haake DA, Adler B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev 2004; 28:291–318 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  25. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  26. Dixit B, Ghosh KK, Fernandes G, Kumar P, Gogoi P et al. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans. FEBS Lett 2016; 590:1002–1016 [View Article][PubMed]
    [Google Scholar]
  27. Kumar M, Yang X, Coleman AS, Pal U. BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis 2010; 201:1084–1095 [View Article][PubMed]
    [Google Scholar]
  28. Ghosh KK, Prakash A, Balamurugan V, Kumar M. Catecholamine-modulated novel surface-exposed adhesin LIC20035 of Leptospira spp. binds host extracellular matrix components and is recognized by the host during infection. Appl Environ Microbiol 2018; 84:e0236002317 [View Article][PubMed]
    [Google Scholar]
  29. Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D et al. The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immun 2000; 68:2276–2285 [View Article][PubMed]
    [Google Scholar]
  30. Domingos RF, Vieira ML, Romero EC, Gonçales AP, de Morais ZM et al. Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions. BMC Microbiol 2012; 12:50 [View Article][PubMed]
    [Google Scholar]
  31. Haake DA, Matsunaga J. Characterization of the leptospiral outer membrane and description of three novel leptospiral membrane proteins. Infect Immun 2002; 70:4936–4945 [View Article][PubMed]
    [Google Scholar]
  32. Pinne M, Haake DA. A comprehensive approach to identification of surface-exposed, outer membrane-spanning proteins of Leptospira interrogans. PLoS One 2009; 4:e6071 [View Article][PubMed]
    [Google Scholar]
  33. Perez-Iratxeta C, Andrade-Navarro MA. K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 2008; 8:25 [View Article][PubMed]
    [Google Scholar]
  34. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292:195–202 [View Article][PubMed]
    [Google Scholar]
  35. Lin YP, Lee DW, McDonough SP, Nicholson LK, Sharma Y et al. Repeated domains of leptospira immunoglobulin-like proteins interact with elastin and tropoelastin. J Biol Chem 2009; 284:19380–19391 [View Article][PubMed]
    [Google Scholar]
  36. Barbosa AS, Abreu PA, Neves FO, Atzingen MV, Watanabe MM et al. A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 2006; 74:6356–6364 [View Article][PubMed]
    [Google Scholar]
  37. Chalayon P, Chanket P, Boonchawalit T, Chattanadee S, Srimanote P et al. Leptospirosis serodiagnosis by ELISA based on recombinant outer membrane protein. Trans R Soc Trop Med Hyg 2011; 105:289–297 [View Article][PubMed]
    [Google Scholar]
  38. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960; 20:37–46 [View Article]
    [Google Scholar]
  39. Altman DG. Practical Statistics for Medical Research CRC Press; 1990
    [Google Scholar]
  40. Setubal JC, Reis M, Matsunaga J, Haake DA. Lipoprotein computational prediction in spirochaetal genomes. Microbiology 2006; 152:113–121 [View Article][PubMed]
    [Google Scholar]
  41. Haake DA, Walker EM, Blanco DR, Bolin CA, Miller MN et al. Changes in the surface of Leptospira interrogans serovar grippotyphosa during in vitro cultivation. Infect Immun 1991; 59:1131–1140[PubMed]
    [Google Scholar]
  42. Abreu PAE, Seguro AC, Canale D, Silva A, Matos L et al. Lp25 membrane protein from pathogenic Leptospira spp. is associated with rhabdomyolysis and oliguric acute kidney injury in a guinea pig model of leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005615 [View Article][PubMed]
    [Google Scholar]
  43. Barbosa AS, Monaris D, Silva LB, Morais ZM, Vasconcellos SA et al. Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect Immun 2010; 78:3207–3216 [View Article][PubMed]
    [Google Scholar]
  44. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 2013; 41:W349–W357 [View Article][PubMed]
    [Google Scholar]
  45. Oliveira R, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA et al. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen. PLoS One 2011; 6:e21962 [View Article][PubMed]
    [Google Scholar]
  46. Robbins GT, Hahn BL, Evangelista KV, Padmore L, Aranda PS et al. Evaluation of cell binding activities of Leptospira ECM adhesins. PLoS Negl Trop Dis 2015; 9:e0003712 [View Article][PubMed]
    [Google Scholar]
  47. Woodward MP, Young WW, Bloodgood RA. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods 1985; 78:143–153 [View Article][PubMed]
    [Google Scholar]
  48. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997; 390:580–586 [View Article][PubMed]
    [Google Scholar]
  49. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375–388 [View Article][PubMed]
    [Google Scholar]
  50. Haake DA. Spirochaetal lipoproteins and pathogenesis. Microbiology 2000; 146:1491–1504 [View Article][PubMed]
    [Google Scholar]
  51. Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL et al. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 2004; 186:2164–2172 [View Article][PubMed]
    [Google Scholar]
  52. Stevenson B, Choy HA, Pinne M, Rotondi ML, Miller MC et al. Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS One 2007; 2:e1188 [View Article][PubMed]
    [Google Scholar]
  53. Murray GL. The lipoprotein LipL32, an enigma of leptospiral biology. Vet Microbiol 2013; 162:305–314 [View Article][PubMed]
    [Google Scholar]
  54. Nally JE, Whitelegge JP, Bassilian S, Blanco DR, Lovett MA. Characterization of the outer membrane proteome of Leptospira interrogans expressed during acute lethal infection. Infect Immun 2007; 75:766–773 [View Article][PubMed]
    [Google Scholar]
  55. Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G et al. Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect Immun 2015; 83:3061–3073 [View Article][PubMed]
    [Google Scholar]
  56. Caimano MJ, Sivasankaran SK, Allard A, Hurley D, Hokamp K et al. A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni. PLoS Pathog 2014; 10:e1004004 [View Article][PubMed]
    [Google Scholar]
  57. Ito T, Yanagawa R. Leptospiral attachment to extracellular matrix of mouse fibroblast (L929) cells. Vet Microbiol 1987; 15:89–96 [View Article][PubMed]
    [Google Scholar]
  58. Fernandes LG, Vieira ML, Kirchgatter K, Alves IJ, de Morais ZM et al. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp. Infect Immun 2012; 80:3679–3692 [View Article][PubMed]
    [Google Scholar]
  59. Ito T, Yanagawa R. Leptospiral attachment to four structural components of extracellular matrix. Nihon Juigaku Zasshi 1987; 49:875–882 [View Article][PubMed]
    [Google Scholar]
  60. Edwards AM, Jenkinson HF, Woodward MJ, Dymock D. Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 2005; 73:2891–2898 [View Article][PubMed]
    [Google Scholar]
  61. Fitzgerald TJ, Repesh LA, Blanco DR, Miller JN. Attachment of Treponema pallidum to fibronectin, laminin, collagen IV, and collagen I, and blockage of attachment by immune rabbit IgG. Br J Vener Dis 1984; 60:357–363 [View Article][PubMed]
    [Google Scholar]
  62. Rajan B, Kumar S, Pillai RM, Antony PX, Mukhopadhyay HK et al. Comparative study on serodiagnosis of bovine leptospirosis by microagglutination test (MAT) and indirect ELISA. Int J Curr Microbiol App Sci 2017; 6:1551–1558
    [Google Scholar]
  63. Tomich RGP, Bomfim MRQ, Koury MC, Pellegrin AO, Pellegrin LA et al. Leptospirosis serosurvey in bovines from Brazilian Pantanal using IGG ELISA with recombinant protein LipL32 and microscopic agglutination test. Braz J Microbiol 2007; 38:674–680 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000685
Loading
/content/journal/micro/10.1099/mic.0.000685
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error