1887

Abstract

A genetic linkage between a conserved gene cluster (Nit1C) and the ability of bacteria to utilize cyanide as the sole nitrogen source was demonstrated for nine different bacterial species. These included three strains whose cyanide nutritional ability has formerly been documented (Pseudomonas fluorescens Pf11764, Pseudomonas putida BCN3 and Klebsiella pneumoniae BCN33), and six not previously known to have this ability [Burkholderia (Paraburkholderia) xenovorans LB400, Paraburkholderia phymatum STM815, Paraburkholderia phytofirmans PsJN, Cupriavidus (Ralstonia) eutropha H16, Gluconoacetobacter diazotrophicus PA1 5 and Methylobacterium extorquens AM1]. For all bacteria, growth on or exposure to cyanide led to the induction of the canonical nitrilase (NitC) linked to the gene cluster, and in the case of Pf11764 in particular, transcript levels of cluster genes (nitBCDEFGH) were raised, and a nitC knock-out mutant failed to grow. Further studies demonstrated that the highly conserved nitB gene product was also significantly elevated. Collectively, these findings provide strong evidence for a genetic linkage between Nit1C and bacterial growth on cyanide, supporting use of the term cyanotrophy in describing what may represent a new nutritional paradigm in microbiology. A broader search of Nit1C genes in presently available genomes revealed its presence in 270 different bacteria, all contained within the domain Bacteria, including Gram-positive Firmicutes and Actinobacteria, and Gram-negative Proteobacteria and Cyanobacteria. Absence of the cluster in the Archaea is congruent with events that may have led to the inception of Nit1C occurring coincidentally with the first appearance of cyanogenic species on Earth, dating back 400–500 million years.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000668
2018-05-21
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/7/956.html?itemId=/content/journal/micro/10.1099/mic.0.000668&mimeType=html&fmt=ahah

References

  1. Kutchan TM, Gershenzon J, Moller BL, Gang DR. Natural products. In Buchanan BB, Gruissem W, Jones RL. (editors) Biochemistry and Molecular Biology of Plants Chichester: John Wiley & Sons, Ltd; 2015; pp. 1132– 1206
    [Google Scholar]
  2. Adjei MD, Ohta Y. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World J Microbiol Biotechnol 1999; 15: 699– 704 [CrossRef]
    [Google Scholar]
  3. Harris R, Knowles CJ. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J Gen Microbiol 1983; 129: 1005– 1011 [CrossRef] [PubMed]
    [Google Scholar]
  4. Finnegan I, Toerien S, Abbot L, Smit F, Raubenheimer HG. Identification and characterisation of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions and simple organic nitriles. Appl Microbiol Biotechnol 1991; 36: 142– 144 [CrossRef]
    [Google Scholar]
  5. Skowronski B, Strobel GA. Cyanide resistance and cyanide utilization by a strain of Bacillus pumilus. Can J Microbiol 1969; 15: 93– 98 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ware GC, Painter HA. Bacterial utilization of cyanide. Nature 1955; 175: 900 [CrossRef] [PubMed]
    [Google Scholar]
  7. Estepa J, Luque-Almagro VM, Manso I, Escribano MP, Martínez-Luque M et al. The nit1C gene cluster of Pseudomonas pseudoalcaligenes CECT5344 involved in assimilation of nitriles is essential for growth on cyanide. Environ Microbiol Rep 2012; 4: 326– 334 [CrossRef] [PubMed]
    [Google Scholar]
  8. Podar M, Eads JR, Richardson TH. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 2005; 5: 42– 54 [CrossRef] [PubMed]
    [Google Scholar]
  9. Schlebusch M, Forchhammer K. Requirement of the nitrogen starvation-induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2010; 76: 6101– 6107 [CrossRef] [PubMed]
    [Google Scholar]
  10. Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M et al. Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 2013; 3: 101– 118 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kunz DA, Wang CS, Chen JL. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiology 1994; 140: 1705– 1712 [CrossRef] [PubMed]
    [Google Scholar]
  12. Fernandez RF, Dolghih E, Kunz DA. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 2004; 70: 121– 128 [CrossRef] [PubMed]
    [Google Scholar]
  13. Fernandez RF, Kunz DA. Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. J Bacteriol 2005; 187: 6396– 6402 [CrossRef] [PubMed]
    [Google Scholar]
  14. Jones LB, Kunz DA. Complete genome sequence of a cyanotroph, Pseudomonas fluorescens NCIMB 11764, employing single-molecule real-time technology. Genome Announc 2015; 3: e01111-15 [CrossRef] [PubMed]
    [Google Scholar]
  15. Lennox ES. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1955; 1: 190– 206 [CrossRef] [PubMed]
    [Google Scholar]
  16. Chen J-L, Kunz DA. Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 involves a putative siderophore. FEMS Microbiol Lett 1997; 156: 61– 67 [Crossref]
    [Google Scholar]
  17. Kunz DA, Ribbons DW, Chapman PJ. Metabolism of allylglycine and cis-crotylglycine by Pseudomonas putida (arvilla) mt-2 harboring a TOL plasmid. J Bacteriol 1981; 148: 72– 82 [PubMed]
    [Google Scholar]
  18. Silva-Avalos J, Richmond MG, Nagappan O, Kunz DA. Degradation of the metal-cyano complex tetracyanonickelate(II) by cyanide-utilizing bacterial isolates. Appl Environ Microbiol 1990; 56: 3664– 3670 [PubMed]
    [Google Scholar]
  19. Kunz DA, Chen JL, Pan G. Accumulation of α-keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 1998; 64: 4452– 4459 [PubMed]
    [Google Scholar]
  20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680– 685 [CrossRef] [PubMed]
    [Google Scholar]
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265– 275 [PubMed]
    [Google Scholar]
  22. Fawcett JK, Scott JE. A rapid and precise method for the determination of urea. J Clin Pathol 1960; 13: 156– 159 [CrossRef] [PubMed]
    [Google Scholar]
  23. Martí-Arbona R, Xu C, Steele S, Weeks A, Kuty GF et al. Annotating enzymes of unknown function: N-formimino-L-glutamate deiminase is a member of the amidohydrolase superfamily. Biochemistry 2006; 45: 1997– 2005 [CrossRef] [PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley and Sons; 1991; pp. 115– 175
    [Google Scholar]
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  26. Schweizer HP. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 1992; 6: 1195– 1204 [CrossRef] [PubMed]
    [Google Scholar]
  27. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212: 77– 86 [CrossRef] [PubMed]
    [Google Scholar]
  28. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009; 6: 343– 345 [CrossRef] [PubMed]
    [Google Scholar]
  29. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in Gram negative bacteria. Biotechnology 1983; 1: 784– 791 [CrossRef]
    [Google Scholar]
  30. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402– 408 [CrossRef] [PubMed]
    [Google Scholar]
  32. Pundir S, Martin MJ, O’Donovan C. UniProt Protein Knowledgebase. In Wu CH, Arighi CN, Ross KE. (editors) Protein Bioinformatics: From Protein Modifications and Networks to Proteomics New York, NY: Springer; 2017; pp. 41– 55
    [Google Scholar]
  33. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 2004; 32: 115D– D119 [CrossRef] [PubMed]
    [Google Scholar]
  34. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7: 539– 547 [CrossRef] [PubMed]
    [Google Scholar]
  35. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972– 1973 [CrossRef] [PubMed]
    [Google Scholar]
  36. Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005; 21: 2104– 2105 [CrossRef] [PubMed]
    [Google Scholar]
  37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59: 307– 321 [CrossRef] [PubMed]
    [Google Scholar]
  38. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25: 1307– 1320 [CrossRef] [PubMed]
    [Google Scholar]
  39. Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 2005; 21: 4338– 4347 [CrossRef] [PubMed]
    [Google Scholar]
  40. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997; 14: 685– 695 [CrossRef] [PubMed]
    [Google Scholar]
  41. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006; 55: 539– 552 [CrossRef] [PubMed]
    [Google Scholar]
  42. Popescu AA, Huber KT, Paradis E. ape 3.0: new tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 2012; 28: 1536– 1537 [CrossRef] [PubMed]
    [Google Scholar]
  43. Team RDC. R: A Language and Environment for Statistical Computing Vienna, Austria: The R Foundation for Statistical Computing; 2011; www.r-project.org/
    [Google Scholar]
  44. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14: 1188– 1190 [CrossRef] [PubMed]
    [Google Scholar]
  45. Harris RE, Knowles CJ. The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth. FEMS Microbiol Lett 1983; 20: 337– 341 [CrossRef]
    [Google Scholar]
  46. Heinemann U, Engels D, Bürger S, Kiziak C, Mattes R et al. Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl Environ Microbiol 2003; 69: 4359– 4366 [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhang L, Yin B, Wang C, Jiang S, Wang H et al. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J Struct Biol 2014; 188: 93– 101 [CrossRef] [PubMed]
    [Google Scholar]
  48. Broderick JB, Duffus BR, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114: 4229– 4317 [CrossRef] [PubMed]
    [Google Scholar]
  49. Marsh EN, Patterson DP, Li L. Adenosyl radical: reagent and catalyst in enzyme reactions. Chembiochem 2010; 11: 604– 621 [CrossRef] [PubMed]
    [Google Scholar]
  50. Svejstrup JQ. Elongator complex: how many roles does it play?. Curr Opin Cell Biol 2007; 19: 331– 336 [CrossRef] [PubMed]
    [Google Scholar]
  51. Paraskevopoulou C, Fairhurst SA, Lowe DJ, Brick P, Onesti S. The elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine. Mol Microbiol 2006; 59: 795– 806 [CrossRef] [PubMed]
    [Google Scholar]
  52. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 1999; 4: 123– 128 [CrossRef] [PubMed]
    [Google Scholar]
  53. Huang B, Johansson MJ, Byström AS. An early step in wobble uridine tRNA modification requires the elongator complex. RNA 2005; 11: 424– 436 [CrossRef] [PubMed]
    [Google Scholar]
  54. Selvadurai K, Wang P, Seimetz J, Huang RH. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol 2014; 10: 810– 812 [CrossRef] [PubMed]
    [Google Scholar]
  55. Pierrel F, Douki T, Fontecave M, Atta M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J Biol Chem 2004; 279: 47555– 47563 [CrossRef] [PubMed]
    [Google Scholar]
  56. Toh SM, Xiong L, Bae T, Mankin AS. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 2008; 14: 98– 106 [CrossRef] [PubMed]
    [Google Scholar]
  57. Wang C, Kunz DA, Venables BJ. Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 1996; 62: 2195– 2197 [PubMed]
    [Google Scholar]
  58. Chakrabarty AM. inventor General Electric Company, assignee Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof patent US 4259444 A. 1981
  59. Bopp LH. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol 1986; 1: 23– 29 [CrossRef]
    [Google Scholar]
  60. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 2006; 103: 15280– 15287 [CrossRef] [PubMed]
    [Google Scholar]
  61. Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69: 527– 543 [CrossRef] [PubMed]
    [Google Scholar]
  62. Solomonson LP. Cyanide as a metabolic inhibitor. In Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F et al. (editors) Cyanide in Biology London, UK: Academic Press Inc; 1981; pp. 11– 28
    [Google Scholar]
  63. Mills EM, Gunasekar PG, Pavlakovic G, Isom GE. Cyanide-induced apoptosis and oxidative stress in differentiated PC12 cells. J Neurochem 1996; 67: 1039– 1046 [CrossRef] [PubMed]
    [Google Scholar]
  64. Gunasekar PG, Sun PW, Kanthasamy AG, Borowitz JL, Isom GE. Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-methyl-D-aspartate receptor activation. J Pharmacol Exp Ther 1996; 277: 150– 155 [PubMed]
    [Google Scholar]
  65. Mahaseth T, Kuzminov A. Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation. Mol Microbiol 2015; 96: 349– 367 [CrossRef] [PubMed]
    [Google Scholar]
  66. Woodmansee AN, Imlay JA. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 2002; 277: 34055– 34066 [CrossRef] [PubMed]
    [Google Scholar]
  67. Garcia GA, Kittendorf JD. Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem 2005; 33: 229– 251 [CrossRef] [PubMed]
    [Google Scholar]
  68. Thiaville JJ, Kellner SM, Yuan Y, Hutinet G, Thiaville PC et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci USA 2016; 113: E1452 E1459 [CrossRef] [PubMed]
    [Google Scholar]
  69. Grosjean H. Nucleic acids are not boring long polymers of only four types of nucleotides. In Grosjean H. (editor) DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution Austin, TX: Landes Bioscience; 2009; pp. 1– 18
    [Google Scholar]
  70. Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol 2003; 131: 872– 877 [CrossRef] [PubMed]
    [Google Scholar]
  71. Howell CR, Stipanovic RD. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 1979; 69: 480– 482 [CrossRef]
    [Google Scholar]
  72. Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 2008; 74: 3085– 3093 [CrossRef] [PubMed]
    [Google Scholar]
  73. Compeau G, Al-Achi BJ, Platsouka E, Levy SB. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 1988; 54: 2432– 2438 [PubMed]
    [Google Scholar]
  74. Holloway BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 1955; 13: 572– 581 [CrossRef] [PubMed]
    [Google Scholar]
  75. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 2001; 411: 948– 950 [CrossRef] [PubMed]
    [Google Scholar]
  76. Frommel MI, Nowak J, Lazarovits G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 1991; 96: 928– 936 [CrossRef] [PubMed]
    [Google Scholar]
  77. Wilde E. Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Archiv für Mikrobiologie 1962; 43: 109– 137 [CrossRef]
    [Google Scholar]
  78. Peel D, Quayle JR. Microbial growth on C1 compounds. 1. Isolation and characterization of Pseudomonas AM 1. Biochem J 1961; 81: 465– 469 [CrossRef] [PubMed]
    [Google Scholar]
  79. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM et al. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 1989; 39: 361– 364
    [Google Scholar]
  80. Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33: 103– 119 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000668
Loading
/content/journal/micro/10.1099/mic.0.000668
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error