1887

Abstract

Metallothioneins (MTs) are small proteins with highly conserved cysteine residues and are involved in metal homeostasis and metal detoxification. Two metallothionein genes ShMT1 and ShMT2 from the ectomycorrhizal fungus Suillus himalayensis were characterised for their potential role in heavy metal detoxification. The response of these MTs to the exogenous concentrations of copper and cadmium was studied by qPCR analysis. The exogenous copper but not the cadmium at the tested concentrations induced the expression of the MT genes. The functional role of ShMTs was validated by expressing the two genes through functional complementation in yeast mutant strain cup1 (copper-sensitive), ycf1 (cadmium- sensitive) and zrc1 (zinc-sensitive). The mutant strain successfully expressed the two genes resulting in wild-type phenotype restoration of copper, cadmium and zinc tolerance. The present study shows that the ectomycorrhizal fungus S. himalayensis encodes two metallothionein genes (ShMT1 and ShMT2) which are more inducible by copper than cadmium and could play an important role in their detoxification.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000666
2018-05-15
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/6/868.html?itemId=/content/journal/micro/10.1099/mic.0.000666&mimeType=html&fmt=ahah

References

  1. Chen SH, Russell DH. Reaction of human Cd7 metallothionein and N-ethylmaleimide: kinetic and structural insights from electrospray ionization mass spectrometry. Biochemistry 2015; 54: 6021– 6028 [CrossRef] [PubMed]
    [Google Scholar]
  2. Iturbe-Espinoza P, Gil-Moreno S, Lin W, Calatayud S, Palacios Ò et al. The fungus Tremella mesenterica encodes the longest metallothionein currently known: gene, protein and metal binding characterization. PLoS One 2016; 11: e0148651 [CrossRef] [PubMed]
    [Google Scholar]
  3. Capdevila M, Bofill R, Palacios Ò., Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 2012; 256: 46– 62 [CrossRef]
    [Google Scholar]
  4. Capdevila M, Atrian S. Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 2011; 16: 977– 989 [CrossRef] [PubMed]
    [Google Scholar]
  5. Binz PA, Kägi JH. Metallothionein: molecular evolution and classification. In Klaassen CD. (editor) Metallothionein IV Basel: Birkhäuser; 1999; pp. 7– 13 [Crossref]
    [Google Scholar]
  6. Palacios O, Atrian S, Capdevila M. Zn- and Cu-thioneins: a functional classification for metallothioneins?. J Biol Inorg Chem 2011; 16: 991– 1009 [CrossRef] [PubMed]
    [Google Scholar]
  7. Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5: 1146– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  8. Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D et al. Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 2007; 174: 151– 158 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS. Copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum have different patterns of regulation. Appl Environ Microbiol 2009; 75: 2266– 2274 [Crossref]
    [Google Scholar]
  10. Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M et al. Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 2011; 190: 916– 926 [CrossRef] [PubMed]
    [Google Scholar]
  11. Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H et al. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 2016; 120: 358– 369 [CrossRef] [PubMed]
    [Google Scholar]
  12. Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A et al. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 2014; 67: 3– 14 [CrossRef] [PubMed]
    [Google Scholar]
  13. Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 2014; 6: 1693– 1701 [CrossRef] [PubMed]
    [Google Scholar]
  14. Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L. Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 2014; 160: 2235– 2242 [CrossRef] [PubMed]
    [Google Scholar]
  15. Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R et al. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ Microbiol 2016; 18: 2446– 2454 [CrossRef] [PubMed]
    [Google Scholar]
  16. Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV et al. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 2017; 19: 2577– 2587 [CrossRef] [PubMed]
    [Google Scholar]
  17. Verma B, Sudhakara M. Suillus himalayensis (Basidiomycota, Agaricomycetes, Boletales), a new species associated with Pinus wallichiana from the northwestern Himalayas, India. Nova Hedwigia 2014; 99: 541– 550 [CrossRef]
    [Google Scholar]
  18. Ruytinx J, Craciun AR, Verstraelen K, Vangronsveld J, Colpaert JV et al. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates. Mycorrhiza 2011; 21: 145– 154 [CrossRef] [PubMed]
    [Google Scholar]
  19. Melin E. Physiology of mycorrhizal relations in plants. Annu Rev Plant Physiol 1953; 4: 325– 346 [CrossRef]
    [Google Scholar]
  20. Gay G. Effect of the ectomycorrhizal fungus Hebeloma hiemale on adventitious root formation in derooted Pinus halepensis shoot hypocotyls. Can J Bot 1990; 68: 1265– 1270 [CrossRef]
    [Google Scholar]
  21. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  22. Hamer DH, Thiele DJ, Lemontt JE. Function and autoregulation of yeast copperthionein. Science 1985; 228: 685– 690 [CrossRef] [PubMed]
    [Google Scholar]
  23. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 1994; 269: 22853– 22857 [PubMed]
    [Google Scholar]
  24. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ et al. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 1997; 94: 42– 47 [PubMed] [Crossref]
    [Google Scholar]
  25. Li L, Kaplan J. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 1998; 273: 22181– 22187 [CrossRef] [PubMed]
    [Google Scholar]
  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  27. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988; 16: 10881– 10890 [CrossRef] [PubMed]
    [Google Scholar]
  28. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996; 6: 986– 994 [CrossRef] [PubMed]
    [Google Scholar]
  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 2001; 25: 402– 408 [CrossRef] [PubMed]
    [Google Scholar]
  30. Minet M, Dufour ME, Lacroute F. Complementation of mutants by Arabidopsis thaliana cDNA. Plant J 1992; 32: 417– 422
    [Google Scholar]
  31. Stearns T, Ma H, Botstein D. Manipulating yeast genome using plasmid vectors. Methods Enzymol 1990; 185: 280– 297 [PubMed] [Crossref]
    [Google Scholar]
  32. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 2011; 68: 17– 24 [CrossRef]
    [Google Scholar]
  33. Op de Beeck M, Ruytinx J, Smits MM, Vangronsveld J, Colpaert JV et al. Belowground fungal communities in pioneer Scots pine stands growing on heavy metal polluted and non-polluted soils. Soil Biology and Biochemistry 2015; 86: 58– 66 [CrossRef]
    [Google Scholar]
  34. Ziller A, Yadav RK, Capdevila M, Reddy MS, Vallon L et al. Metagenomics analysis reveals a new metallothionein family: sequence and metal-binding features of new environmental cysteine-rich proteins. J Inorg Biochem 2017; 167: 1– 11 [CrossRef] [PubMed]
    [Google Scholar]
  35. Khullar S, Sudhakara Reddy M. Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotechnol 2016; 5: 1– 11 [CrossRef]
    [Google Scholar]
  36. Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P. Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 2004; 70: 7413– 7417 [CrossRef] [PubMed]
    [Google Scholar]
  37. Leverrier P, Montigny C, Garrigos M, Champeil P. Metal binding to ligands: cadmium complexes with glutathione revisited. Anal Biochem 2007; 371: 215– 228 [CrossRef] [PubMed]
    [Google Scholar]
  38. Pérez-Rafael S, Monteiro F, Dallinger R, Atrian S, Palacios O et al. Cantareus aspersus metallothionein metal binding abilities: the unspecific CaCd/CuMT isoform provides hints about the metal preference determinants in metallothioneins. Biochim Biophys Acta 2014; 1844: 1694– 1707 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000666
Loading
/content/journal/micro/10.1099/mic.0.000666
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error