1887

Abstract

Here we highlight the development of a simple and high-throughput mung bean model to study virulence in the opportunistic pathogen . The model is easy to set up, and infection and virulence can be monitored for up to 10 days. In a first test of the model, we found that mung bean seedlings infected with PAO1 showed poor development of roots and high mortality rates compared to uninfected controls. We also found that a quorum-sensing (QS) mutant was significantly less virulent when compared with the PAO1 wild-type. Our work introduces a new tool for studying virulence in that will allow for high-throughput virulence studies of mutants and testing of the efficacy of new therapies at a time when new antimicrobial drugs are desperately needed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000659
2018-05-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/764.html?itemId=/content/journal/micro/10.1099/mic.0.000659&mimeType=html&fmt=ahah

References

  1. Lin CK, Kazmierczak BI. Inflammation: a double-edged sword in the response to Pseudomonas aeruginosa infection. J Innate Immun 2017;9:250–261 [CrossRef][PubMed]
    [Google Scholar]
  2. Barr HL, Halliday N, Cámara M, Barrett DA, Williams P et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J 2015;46:1046–1054 [CrossRef][PubMed]
    [Google Scholar]
  3. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013;67:159–173 [CrossRef][PubMed]
    [Google Scholar]
  4. Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature 2017;551:313–320 [CrossRef][PubMed]
    [Google Scholar]
  5. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012;10:841–851 [CrossRef][PubMed]
    [Google Scholar]
  6. Williams BJ, Dehnbostel J, Blackwell TS. Pseudomonas aeruginosa: host defence in lung diseases. Respirology 2010;15:1037–1056 [CrossRef][PubMed]
    [Google Scholar]
  7. Roberts AE, Kragh KN, Bjarnsholt T, Diggle SP. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol 2015;427:3646–3661 [CrossRef][PubMed]
    [Google Scholar]
  8. Harrison F, Browning LE, Vos M, Buckling A. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 2006;4:21 [CrossRef][PubMed]
    [Google Scholar]
  9. Racey D, Inglis RF, Harrison F, Oliver A, Buckling A. The effect of elevated mutation rates on the evolution of cooperation and virulence of Pseudomonas aeruginosa. Evolution 2010;64:515–521 [CrossRef][PubMed]
    [Google Scholar]
  10. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 2008;4:e1000184 [CrossRef][PubMed]
    [Google Scholar]
  11. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 1999;96:47–56 [CrossRef][PubMed]
    [Google Scholar]
  12. Papaioannou E, Wahjudi M, Nadal-Jimenez P, Koch G, Setroikromo R et al. Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 2009;53:4891–4897 [CrossRef][PubMed]
    [Google Scholar]
  13. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011;55:2655–2661 [CrossRef][PubMed]
    [Google Scholar]
  14. Stieritz DD, Holder IA. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis 1975;131:688–691 [CrossRef][PubMed]
    [Google Scholar]
  15. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS et al. Quorum sensing and the social evolution of bacterial virulence. Curr Biol 2009;19:341–345 [CrossRef][PubMed]
    [Google Scholar]
  16. Moser C, van Gennip M, Bjarnsholt T, Jensen , Lee B et al. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009;117:95–107 [CrossRef][PubMed]
    [Google Scholar]
  17. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2010;2:29ra31 [CrossRef][PubMed]
    [Google Scholar]
  18. Harrison F, Muruli A, Higgins S, Diggle SP. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014;82:3312–3323 [CrossRef][PubMed]
    [Google Scholar]
  19. Harrison F, Diggle SP. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology 2016;162:1755–1760 [CrossRef][PubMed]
    [Google Scholar]
  20. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995;268:1899–1902 [CrossRef][PubMed]
    [Google Scholar]
  21. He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN et al. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 2004;37:589–602 [CrossRef][PubMed]
    [Google Scholar]
  22. Garge SS, Nerurkar AS. Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatal Agric Biotechnol 2017;9:48–57 [CrossRef]
    [Google Scholar]
  23. Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC et al. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 2000;97:8815–8821 [CrossRef][PubMed]
    [Google Scholar]
  24. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2006;2:e56 [CrossRef][PubMed]
    [Google Scholar]
  25. Starkey M, Rahme LG. Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc 2009;4:117–124 [CrossRef][PubMed]
    [Google Scholar]
  26. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 2014;111:4280–4284 [CrossRef][PubMed]
    [Google Scholar]
  27. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG et al. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 2004;134:320–331 [CrossRef][PubMed]
    [Google Scholar]
  28. Quiñones B, Dulla G, Lindow SE. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 2005;18:682–693 [CrossRef][PubMed]
    [Google Scholar]
  29. Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 2008;31:1497–1509 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000659
Loading
/content/journal/micro/10.1099/mic.0.000659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error