1887

Abstract

has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers – bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000643
2018-04-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/421.html?itemId=/content/journal/micro/10.1099/mic.0.000643&mimeType=html&fmt=ahah

References

  1. Lipman JG. Experiments on the transformation and fixation of nitrogen by bacteria. New Jersey State Agric Exp Sta Ann Rep 1903;24:217–285
    [Google Scholar]
  2. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc 1934;56:658–666 [CrossRef]
    [Google Scholar]
  3. Ortiz PJ, Ochoa S. Studies on polynucleotides synthesized by polynucleotide phosphorylase. IV. P32-labeled ribonucleic acid. J Biol Chem 1959;234:1208–1212[PubMed]
    [Google Scholar]
  4. Bishop PE, Jarlenski DM, Hetherington DR. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc Natl Acad Sci USA 1980;77:7342–7346 [CrossRef][PubMed]
    [Google Scholar]
  5. Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chisnell JR et al. Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 1986;232:92–94 [CrossRef][PubMed]
    [Google Scholar]
  6. Bühler T, Sann R, Monter U, Dingler C, Kuhla J et al. Control of dinitrogen fixation in ammonium-assimilating cultures of Azotobacter vinelandii. Arch Microbiol 1987;148:247–251 [CrossRef]
    [Google Scholar]
  7. Hine PW, Lees H. The growth of nitrogen-fixing Azotobacter chroococcum in continuous culture under intense aeration. Can J Microbiol 1976;22:611–618 [CrossRef][PubMed]
    [Google Scholar]
  8. Jensen HL. The Azotobacteriaceae. Bacteriol Rev 1954;18:195–214[PubMed]
    [Google Scholar]
  9. Kuhla J, Oelze J. Dependency of growth yield, maintenance and Ks-values on the dissolved oxygen concentration in continuous cultures of Azotobacter vinelandii. Arch Microbiol 1988;149:509–514 [CrossRef]
    [Google Scholar]
  10. Poole RK, Hill S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii—roles of the terminal oxidases. Biosci Rep 1997;17:303–317 [CrossRef][PubMed]
    [Google Scholar]
  11. Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 2009;191:4534–4545 [CrossRef][PubMed]
    [Google Scholar]
  12. Noar JD, Bruno-Bárcena JM. Complete genome sequences of Azotobacter vinelandii wild-type strain CA and tungsten-tolerant mutant strain CA6. Genome Announc 2013;1:e00313-13 [CrossRef][PubMed]
    [Google Scholar]
  13. Robson RL, Jones R, Robson RM, Schwartz A, Richardson TH. Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PLoS One 2015;10:e0127997 [CrossRef][PubMed]
    [Google Scholar]
  14. Díaz-Barrera A, Soto E. Biotechnological uses of Azotobacter vinelandii: current state, limits and prospects. Afr J Biotechnol 2010;9:5240–5250
    [Google Scholar]
  15. Koksunan S, Vichitphan S, Laopaiboon L, Vichitphan K, Han J. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system. J Microbiol Biotechnol 2013;23:572–578 [CrossRef][PubMed]
    [Google Scholar]
  16. Villa JA, Ray EE, Barney BM. Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032. FEMS Microbiol Lett 2014;351:70–77 [CrossRef][PubMed]
    [Google Scholar]
  17. Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH. Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: application of a novel nitrogen biosensor. Appl Environ Microbiol 2015;81:4316–4328 [CrossRef][PubMed]
    [Google Scholar]
  18. Noar J, Loveless T, Navarro-Herrero JL, Olson JW, Bruno-Bárcena JM. Aerobic hydrogen production via nitrogenase in Azotobacter vinelandii CA6. Appl Environ Microbiol 2015;81:4507–4516 [CrossRef][PubMed]
    [Google Scholar]
  19. Rediers H, Vanderleyden J, de Mot R. Azotobacter vinelandii: a Pseudomonas in disguise?. Microbiology 2004;150:1117–1119 [CrossRef][PubMed]
    [Google Scholar]
  20. Young JM, Park DC. Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas. Int J Syst Evol Microbiol 2007;57:2894–2901 [CrossRef][PubMed]
    [Google Scholar]
  21. Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter?. Microb Ecol 2012;63:239–248 [CrossRef][PubMed]
    [Google Scholar]
  22. Setubal JC, Almeida NF. The Azotobacter vinelandii genome: an update. In Bruijn FJ. (editor) Biological Nitrogen Fixation Hoboken, New Jersey: John Wiley & Sons, Inc; 2015; pp225–234[Crossref]
    [Google Scholar]
  23. Ackrell BA, Jones CW. The respiratory system of Azotobacter vinelandii. 2. Oxygen effects. Eur J Biochem 1971;20:29–35 [CrossRef][PubMed]
    [Google Scholar]
  24. Senior PJ, Beech GA, Ritchie GA, Dawes EA. The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 1972;128:1193–1201 [CrossRef][PubMed]
    [Google Scholar]
  25. Premakumar R, Lemos E, Bishop P. Evidence for two dinitrogenase reductases under regulatory control by molybdenum in Azotobacter vinelandii. Biochim Biophys Acta 1984;797:64–70 [CrossRef]
    [Google Scholar]
  26. Chisnell JR, Premakumar R, Bishop PE. Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J Bacteriol 1988;170:27–33 [CrossRef][PubMed]
    [Google Scholar]
  27. Wyss O, Neumnn MG, Socolofsky MD. Development and germination of the Azotobacter cyst. J Biophys Biochem Cytol 1961;10:555–565 [CrossRef][PubMed]
    [Google Scholar]
  28. Page WJ, Manchak J, Rudy B. Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl Environ Microbiol 1992;58:2866–2873[PubMed]
    [Google Scholar]
  29. Page WJ, Sadoff HL. Physiological factors affecting transformation of Azotobacter vinelandii. J Bacteriol 1976;125:1080–1087[PubMed]
    [Google Scholar]
  30. Page WJ, von Tigerstrom M. Induction of transformation competence in Azotobacter vinelandii iron-limited cultures. Can J Microbiol 1978;24:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  31. Page WJ, von Tigerstrom M. Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 1979;139:1058–1061[PubMed]
    [Google Scholar]
  32. Herter S, Schmidt M, Thompson ML, Mikolasch A, Schauer F. A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum. Appl Microbiol Biotechnol 2011;90:1037–1049 [CrossRef][PubMed]
    [Google Scholar]
  33. Lewis IM. Cell inclusions and the life cycle of Azotobacter. J Bacteriol 1937;34:191–205[PubMed]
    [Google Scholar]
  34. Vela GR, Rosenthal RS. Effect of peptone on Azotobacter morphology. J Bacteriol 1972;111:260–266[PubMed]
    [Google Scholar]
  35. Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 1986;25:7251–7255 [CrossRef][PubMed]
    [Google Scholar]
  36. Joerger RD, Jacobson MR, Premakumar R, Wolfinger ED, Bishop PE. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J Bacteriol 1989;171:1075–1086 [CrossRef][PubMed]
    [Google Scholar]
  37. Pau RN, Mitchenall LA, Robson RL. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium. J Bacteriol 1989;171:124–129 [CrossRef][PubMed]
    [Google Scholar]
  38. Luque F, Pau RN. Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol Gen Genet 1991;227:481–487 [CrossRef][PubMed]
    [Google Scholar]
  39. Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochem J 1993;293:101–107 [CrossRef][PubMed]
    [Google Scholar]
  40. Maynard RH, Premakumar R, Bishop PE. Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum. J Bacteriol 1994;176:5583–5586 [CrossRef][PubMed]
    [Google Scholar]
  41. Bellenger JP, Wichard T, Xu Y, Kraepiel AM. Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 2011;13:1395–1411 [CrossRef][PubMed]
    [Google Scholar]
  42. Walmsley J, Kennedy C. Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding three nitrogenases in Azotobacter vinelandii. Appl Environ Microbiol 1991;57:622–624[PubMed]
    [Google Scholar]
  43. Bush JA, Wilson PW. A non-guummy chromogenic strain of Azotobacter vinelandii. Nature 1959;184:381 [CrossRef]
    [Google Scholar]
  44. Fekete FA, Spence JT, Emery T. Siderophores produced by nitrogen-fixing Azotobacter vinelandii OP in iron-limited continuous culture. Appl Environ Microbiol 1983;46:1297–1300[PubMed]
    [Google Scholar]
  45. Palanché T, Blanc S, Hennard C, Abdallah MA, Albrecht-Gary AM. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii. Inorg Chem 2004;43:1137–1152 [CrossRef][PubMed]
    [Google Scholar]
  46. Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 1998;144:1747–1754 [CrossRef]
    [Google Scholar]
  47. Harris JO. A study of the effect of growth substrate on the respiration of Azotobacter. J Biol Chem 1946;162:11–20[PubMed]
    [Google Scholar]
  48. George SE, Costenbader CJ, Melton T. Diauxic growth in Azotobacter vinelandii. J Bacteriol 1985;164:866–871[PubMed]
    [Google Scholar]
  49. Page W. Production of poly-β-hydroxybutyrate by Azotobacter vinelandii strain UWD during growth on molasses and other complex carbon sources. Appl Microbiol Biotechnol 1989;31:329–333 [CrossRef]
    [Google Scholar]
  50. Page WJ, Knosp O. Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 1989;55:1334–1339[PubMed]
    [Google Scholar]
  51. Page WJ. Suitability of commercial beet molasses fractions as substrates fro polyhydroxyalkanoate production byAzotobacter vinelandii UWD. Biotechnol Lett 1992;14:385–390 [CrossRef]
    [Google Scholar]
  52. Page W. Production of poly-β-hydroxybutyrate by Azotobacter vinelandii UWD in media containing sugars and complex nitrogen sources. Appl Microbiol Biotechnol 1992;38:117–121 [CrossRef]
    [Google Scholar]
  53. Page WJ. Genetic transformation of molybdenum-starved Azotobacter vinelandii : increased transformation frequency and recipient range. Can J Microbiol 1985;31:659–662 [CrossRef]
    [Google Scholar]
  54. Page WJ, Sadoff HL. Control of transformation competence in Azotobacter vinelandii by nitrogen catabolite derepression. J Bacteriol 1976;125:1088–1095[PubMed]
    [Google Scholar]
  55. Reusch RN, Sadoff HL. D-(-)-poly-beta-hydroxybutyrate in membranes of genetically competent bacteria. J Bacteriol 1983;156:778–788[PubMed]
    [Google Scholar]
  56. Eberhart LJ, Knutson CM, Barney BM. A methodology for markerless genetic modifications in Azotobacter vinelandii. J Appl Microbiol 2016;120:1595–1604 [CrossRef][PubMed]
    [Google Scholar]
  57. Qurollo BA, Bishop PE, Hassan HM. Characterization of the iron superoxide dismutase gene of Azotobacter vinelandii: sodB may be essential for viability. Can J Microbiol 2001;47:63–71 [CrossRef][PubMed]
    [Google Scholar]
  58. Maldonado R, Jiménez J, Casadesús J. Changes of ploidy during the Azotobacter vinelandii growth cycle. J Bacteriol 1994;176:3911–3919 [CrossRef][PubMed]
    [Google Scholar]
  59. Pulakat L, Efuet ET, Gavini N. Segregation pattern of kanamycin resistance marker in Azotobacter vinelandii did not show the constraints expected in a polyploid bacterium. FEMS Microbiol Lett 1998;160:247–252 [CrossRef][PubMed]
    [Google Scholar]
  60. Maldonado R, Garzón A, Dean DR, Casadesús J. Gene dosage analysis in Azotobacter vinelandii. Genetics 1992;132:869–878[PubMed]
    [Google Scholar]
  61. Badran H, Sohoni R, Venkatesh TV, das HK. Construction of a recF deletion mutant of Azotobacter vinelandii and its characterization. FEMS Microbiol Lett 1999;174:363–369 [CrossRef]
    [Google Scholar]
  62. Glick BR, Brooks HE, Pasternak JJ. Transformation of Azotobacter vinelandii with plasmid DNA. J Bacteriol 1985;162:276–279[PubMed]
    [Google Scholar]
  63. Korányi P, Burg K, Berényi M. Stable electrotransformation of symbiont candidate diazotrophic bacterium with plasmids carrying selectable and screenable marker genes. Res Microbiol 1998;149:361–372 [CrossRef][PubMed]
    [Google Scholar]
  64. David M, Tronchet M, Dénarié J. Transformation of Azotobacter vinelandii with plasmids RP4 (IncP-1 group) and RSF1010 (IncQ group). J Bacteriol 1981;146:1154–1157[PubMed]
    [Google Scholar]
  65. Glick BR, Brooks HE, Pasternak JJ. Physiological effects of plasmid DNA transformation on Azotobacter vinelandii. Can J Microbiol 1986;32:145–148 [CrossRef]
    [Google Scholar]
  66. Doran JL, Bingle WH, Roy KL, Hiratsuka K, Page WJ. Plasmid transformation of Azotobacter vinelandii OP. J Gen Microbiol 1987;133:2059–2072 [CrossRef][PubMed]
    [Google Scholar]
  67. Trevors JT, Starodub ME. Electroporation and expression of the broad host-range plasmid pRK2501 in Azotobacter vinelandii. Enzyme Microb Technol 1990;12:653–655 [CrossRef][PubMed]
    [Google Scholar]
  68. Phadnis SH, das HK. Use of the plasmid pRK 2013 as a vehicle for transposition inAzotobacter vinelandii. J Biosci 1987;12:131–135 [CrossRef]
    [Google Scholar]
  69. Contreras A, Maldonado R, Casadesus J. Tn5 mutagenesis and insertion replacement in Azotobacter vinelandii. Plasmid 1991;25:76–80 [CrossRef][PubMed]
    [Google Scholar]
  70. Contreras A, Casadesús J. Tn 10 mutagenesis in Azotobacter vinelandii. Mol Gen Genet 1987;209:276–282 [CrossRef][PubMed]
    [Google Scholar]
  71. Hunter O. Stimulating the growth of Azotobacter by aeration. J Agric Res 1923;23:665–677
    [Google Scholar]
  72. Jones CW, Brice JM, Wright V, Ackrell BA. Respiratory protection of nitrogenase in Azotobacter vinelandii. FEBS Lett 1973;29:77–81 [CrossRef][PubMed]
    [Google Scholar]
  73. Röckel D, Hernando JJ, Vakalopoulou E, Post E, Oelze J. Localization and activities of nitrogenase, glutamine synthetase and glutamate synthase in Azotobacter vinelandii grown in oxygen-controlled continuous culture. Arch Microbiol 1983;136:74–78 [CrossRef][PubMed]
    [Google Scholar]
  74. Kennedy C, Dean D. The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 1992;231:494–498 [CrossRef][PubMed]
    [Google Scholar]
  75. Hageman RV, Burris RH. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc Natl Acad Sci USA 1978;75:2699–2702 [CrossRef][PubMed]
    [Google Scholar]
  76. Tsuprun VL, Orlova EV, Kiselev NA, Mitsova IZ, Blazshchuk IS et al. Electron microscopy of the nitrogenase molecule from Azotobacter vinelandii. J Inorg Biochem 1986;27:141–146 [CrossRef]
    [Google Scholar]
  77. Kim J, Rees DC. Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 1992;360:553–560[PubMed][Crossref]
    [Google Scholar]
  78. Chatterjee R, Ludden PW, Shah VK. Characterization of VNFG, the δ subunit of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. Implications for its role in the formation of functional dinitrogenase 2. J Biol Chem 1997;272:3758–3765[PubMed][Crossref]
    [Google Scholar]
  79. Waugh SI, Paulsen DM, Mylona PV, Maynard RH, Premakumar R et al. The genes encoding the delta subunits of dinitrogenases 2 and 3 are required for mo-independent diazotrophic growth by Azotobacter vinelandii. J Bacteriol 1995;177:1505–1510 [CrossRef][PubMed]
    [Google Scholar]
  80. May HD, Dean DR, Newton WE. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the β-subunit. Biochem J 1991;277:457–464 [CrossRef][PubMed]
    [Google Scholar]
  81. Dean DR, Setterquist RA, Brigle KE, Scott DJ, Laird NF et al. Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein α-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol Microbiol 1990;4:1505–1512 [CrossRef][PubMed]
    [Google Scholar]
  82. Brigle KE, Weiss MC, Newton WE, Dean DR. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. J Bacteriol 1987;169:1547–1553 [CrossRef][PubMed]
    [Google Scholar]
  83. Homer MJ, Dean DR, Roberts GP. Characterization of the γ protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J Biol Chem 1995;270:24745–24752 [CrossRef][PubMed]
    [Google Scholar]
  84. Dingler C, Kuhla J, Wassink H, Oelze J. Levels and activities of nitrogenase proteins in Azotobacter vinelandii grown at different dissolved oxygen concentrations. J Bacteriol 1988;170:2148–2152 [CrossRef][PubMed]
    [Google Scholar]
  85. Hageman RV, Orme-Johnson WH, Burris RH. Role of magnesium adenosine 5′-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. Biochemistry 1980;19:2333–2342 [CrossRef][PubMed]
    [Google Scholar]
  86. Morgan TV, Mccracken J, Orme-Johnson WH, Mims WB, Mortenson LE et al. Pulsed electron paramagnetic resonance studies of the interaction of Mg-ATP and D2O with the iron protein of nitrogenase. Biochemistry 1990;29:3077–3082 [CrossRef][PubMed]
    [Google Scholar]
  87. Yang ZY, Ledbetter R, Shaw S, Pence N, Tokmina-Lukaszewska M et al. Evidence that the Pi release event is the rate-limiting step in the nitrogenase catalytic cycle. Biochemistry 2016;55:3625–3635 [CrossRef][PubMed]
    [Google Scholar]
  88. Klugkist J, Haaker H, Wassink H, Veeger C. The catalytic activity of nitrogenase in intact Azotobacter vinelandii cells. Eur J Biochem 1985;146:509–515 [CrossRef][PubMed]
    [Google Scholar]
  89. Duyvis MG, Wassink H, Haaker H. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle. Biochemistry 1998;37:17345–17354 [CrossRef][PubMed]
    [Google Scholar]
  90. Lough S, Burns A, Watt GD. Redox reactions of the nitrogenase complex from Azotobacter vinelandii. Biochemistry 1983;22:4062–4066 [CrossRef]
    [Google Scholar]
  91. Simpson FB, Burris RH. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 1984;224:1095–1097 [CrossRef][PubMed]
    [Google Scholar]
  92. Hu Y, Lee CC, Ribbe MW. Extending the carbon chain: hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases. Science 2011;333:753–755 [CrossRef][PubMed]
    [Google Scholar]
  93. Lee CC, Hu Y, Ribbe MW. Vanadium nitrogenase reduces CO. Science 2010;329:642 [CrossRef][PubMed]
    [Google Scholar]
  94. Yang ZY, Dean DR, Seefeldt LC. Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons. J Biol Chem 2011;286:19417–19421 [CrossRef][PubMed]
    [Google Scholar]
  95. Rebelein JG, Lee CC, Hu Y, Ribbe MW. The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway. Nat Commun 2016;7:13641 [CrossRef][PubMed]
    [Google Scholar]
  96. Yang ZY, Moure VR, Dean DR, Seefeldt LC. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci USA 2012;109:19644–19648 [CrossRef][PubMed]
    [Google Scholar]
  97. Seefeldt LC, Rasche ME, Ensign SA. Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase. Biochemistry 1995;34:5382–5389 [CrossRef][PubMed]
    [Google Scholar]
  98. Rebelein JG, Stiebritz MT, Lee CC, Hu Y. Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 2017;13:147–149 [CrossRef][PubMed]
    [Google Scholar]
  99. Hageman RV, Burris RH. Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase. Biochim Biophys Acta 1980;591:63–75 [CrossRef][PubMed]
    [Google Scholar]
  100. Wherland S, Burgess BK, Stiefel EI, Newton WE. Nitrogenase reactivity: effects of component ratio on electron flow and distribution during nitrogen fixation. Biochemistry 1981;20:5132–5140 [CrossRef][PubMed]
    [Google Scholar]
  101. Drozd J, Postgate JR. Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum. J Gen Microbiol 1970;63:63–73 [CrossRef][PubMed]
    [Google Scholar]
  102. Rivera-Ortiz JM, Burris RH. Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 1975;123:537–545[PubMed]
    [Google Scholar]
  103. Hwang JC, Chen CH, Burris RH. Inhibition of nitrogenase-catalyzed reductions. Biochim Biophys Acta 1973;292:256–270 [CrossRef][PubMed]
    [Google Scholar]
  104. Kow YW, Burris RH. Purification and properties of membrane-bound hydrogenase from Azotobacter vinelandii. J Bacteriol 1984;159:564–569[PubMed]
    [Google Scholar]
  105. Seefeldt LC, Arp DJ. Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer. Biochimie 1986;68:25–34 [CrossRef][PubMed]
    [Google Scholar]
  106. Hyman MR, Arp DJ. Kinetic analysis of the interaction of nitric oxide with the membrane-associated, nickel and iron-sulfur-containing hydrogenase from Azotobacter vinelandii. Biochim Biophys Acta 1991;1076:165–172 [CrossRef][PubMed]
    [Google Scholar]
  107. Garg RP, Menon AL, Jacobs K, Robson RM, Robson RL. The hypE gene completes the gene cluster for H2-oxidation in Azotobacter vinelandii. J Mol Biol 1994;236:390–396 [CrossRef][PubMed]
    [Google Scholar]
  108. Gollin DJ, Mortenson LE, Robson RL. Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii. FEBS Lett 1992;309:371–375 [CrossRef][PubMed]
    [Google Scholar]
  109. Menon AL, Stults LW, Robson RL, Mortenson LE. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii. Gene 1990;96:67–74 [CrossRef][PubMed]
    [Google Scholar]
  110. Menon AL, Robson RL. In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii. J Bacteriol 1994;176:291–295 [CrossRef][PubMed]
    [Google Scholar]
  111. Chen JC, Mortenson LE, Seefeldt LC. Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii. Curr Microbiol 1995;30:351–355 [CrossRef][PubMed]
    [Google Scholar]
  112. Menon AL, Mortenson LE, Robson RL. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. J Bacteriol 1992;174:4549–4557 [CrossRef][PubMed]
    [Google Scholar]
  113. Sayavedra-Soto LA, Arp DJ. The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase. J Bacteriol 1992;174:5295–5301 [CrossRef][PubMed]
    [Google Scholar]
  114. Wong TY, Maier RJ. Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii. J Bacteriol 1984;159:348–352[PubMed]
    [Google Scholar]
  115. Prosser J, Graham L, Maier RJ. Hydrogen-mediated enhancement of hydrogenase expression in Azotobacter vinelandii. J Bacteriol 1988;170:1990–1993 [CrossRef][PubMed]
    [Google Scholar]
  116. Becking JH. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteriaceae. Plant Soil 1962;16:171–201 [CrossRef]
    [Google Scholar]
  117. Burns RC, Fuchsman WH, Hardy RW. Nitrogenase from vanadium-grown Azotobacter: isolation, characteristics, and mechanistic implications. Biochem Biophys Res Commun 1971;42:353–358 [CrossRef][PubMed]
    [Google Scholar]
  118. Bishop PE, Brill WJ. Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J Bacteriol 1977;130:954–956[PubMed]
    [Google Scholar]
  119. Premakumar R, Jacobitz S, Ricke SC, Bishop PE. Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. J Bacteriol 1996;178:691–696 [CrossRef][PubMed]
    [Google Scholar]
  120. Benemann JR, Smith GM, Kostel PJ, Mckenna CE. Tungsten incorporation into Azotobacter vinelandii nitrogenase. FEBS Lett 1973;29:219–221 [CrossRef][PubMed]
    [Google Scholar]
  121. Hales BJ, Case EE. Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium. J Biol Chem 1987;262:16205–16211[PubMed]
    [Google Scholar]
  122. Horner CK, Allison FE. Utilization of Fixed Nitrogen by Azotobacter and Influence on Nitrogen Fixation. J Bacteriol 1944;47:1–14[PubMed]
    [Google Scholar]
  123. Jacobitz S, Bishop PE. Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. J Bacteriol 1992;174:3884–3888 [CrossRef][PubMed]
    [Google Scholar]
  124. Laane C, Krone W, Konings W, Haaker H, Veeger C. Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. Eur J Biochem 1980;103:39–46 [CrossRef][PubMed]
    [Google Scholar]
  125. Gadkari D, Stolp H. Influence of nitrogen source on growth and nitrogenase activity in Azotobacter vinelandii. Arch Mikrobiol 1974;96:135–144 [CrossRef][PubMed]
    [Google Scholar]
  126. Kleiner D. Quantitative relations for the repression of nitrogenase synthesis in Azotobacter vinelandii by ammonia. Arch Microbiol 1974;101:153–159 [CrossRef][PubMed]
    [Google Scholar]
  127. Klugkist J, Haaker H. Inhibition of nitrogenase activity by ammonium chloride in Azotobacter vinelandii. J Bacteriol 1984;157:148–151[PubMed]
    [Google Scholar]
  128. Kleinschmidt JA, Kleiner D. Relationships between nitrogenase, glutamine synthetase, glutamine, and energy charge in Azotobacter vinelandii. Arch Microbiol 1981;128:412–415 [CrossRef]
    [Google Scholar]
  129. Burns RC, Bulen WA. ATP-dependent hydrogen evolution by cell-free preparations of Azotobacter vinelandii. Biochim Biophys Acta 1965;105:437–445 [CrossRef][PubMed]
    [Google Scholar]
  130. Sorger GJ. Regulation of nitrogen fixation in Azotobacter vinelandii OP and in an apparently partially constitutive mutant. J Bacteriol 1968;95:1721–1726[PubMed]
    [Google Scholar]
  131. Ponnuraj RK, Rubio LM, Grunwald SK, Ludden PW, Nmn- NAD-. NAD-, NMN-, and NADP-dependent modification of dinitrogenase reductases from Rhodospirillum rubrum and Azotobacter vinelandii. FEBS Lett 2005;579:5751–5758 [CrossRef][PubMed]
    [Google Scholar]
  132. Andreeva N, Khmel I. Kinetics of oxygen consumption by cells of Azotobacter vinelandii in batch cultivation and continuous cultivation. Mikrobiologiia 1970;39:280–287
    [Google Scholar]
  133. Kuhla J, Oelze J. Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii. J Bacteriol 1988;170:5325–5329 [CrossRef][PubMed]
    [Google Scholar]
  134. Dingler C, Oelze J. Superoxide dismutase and catalase in Azotobacter vinelandii grown in continuous culture at different dissolved oxygen concentrations. Arch Microbiol 1987;147:291–294 [CrossRef]
    [Google Scholar]
  135. Tindale AE, Mehrotra M, Ottem D, Page WJ. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology 2000;146:1617–1626 [CrossRef][PubMed]
    [Google Scholar]
  136. Sabra W, Zeng AP, Lünsdorf H, Deckwer WD. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol 2000;66:4037–4044 [CrossRef][PubMed]
    [Google Scholar]
  137. Thorneley RN, Ashby GA. Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem J 1989;261:181–187 [CrossRef][PubMed]
    [Google Scholar]
  138. Robson RL. Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum. Biochem J 1979;181:569–575 [CrossRef][PubMed]
    [Google Scholar]
  139. Scherings G, Haaker H, Wassink H, Veeger C. On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii. Eur J Biochem 1983;135:591–599 [CrossRef][PubMed]
    [Google Scholar]
  140. Post E, Kleiner D, Oelze J. Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch Microbiol 1983;134:68–72 [CrossRef][PubMed]
    [Google Scholar]
  141. Nagai S, Aiba S. Reassessment of maintenance and energy uncoupling in the growth of Azotobacter vinelandii. J Gen Microbiol 1972;73:531–538 [CrossRef][PubMed]
    [Google Scholar]
  142. Nagai S, Nishizawa Y, Onodera M, Aiba S. Effect of dissolved oxygen on growth yield and aldolase activity in chemostat culture of Azotobacter vinelandii. J Gen Microbiol 1971;66:197–203 [CrossRef][PubMed]
    [Google Scholar]
  143. Bertsova YV, Bogachev AV, Skulachev VP. Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Biochim Biophys Acta 1998;1363:125–133 [CrossRef][PubMed]
    [Google Scholar]
  144. Bertsova YV, Bogachev AV, Skulachev VP. Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 2001;183:6869–6874 [CrossRef][PubMed]
    [Google Scholar]
  145. Laane C, Haaker H, Veeger C. On the efficiency of oxidative phosphorylation in membrane vesicles of Azotobacter vinelandii and of Rhizobium leguminosarum bacteroids. Eur J Biochem 1979;97:369–377 [CrossRef][PubMed]
    [Google Scholar]
  146. Jones CW, Redfearn ER. The cytochrome system of Azotobacter vinelandii. Biochim Biophys Acta 1967;143:340–353 [CrossRef][PubMed]
    [Google Scholar]
  147. Downs AJ, Jones CW. Respiration-linked proton translocation in Azotobacter vinelandii. FEBS Lett 1975;60:42–46 [CrossRef][PubMed]
    [Google Scholar]
  148. Carter IS, Dawes EA. Effect of oxygen concentration and growth rate on glucose metabolism, poly-β-hydroxybutyrate biosynthesis and respiration of Azotobacter beijerinckii. J Gen Microbiol 1979;110:393–400 [CrossRef]
    [Google Scholar]
  149. Linkerhägner K, Oelze J. Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations. J Bacteriol 1997;179:1362–1367 [CrossRef][PubMed]
    [Google Scholar]
  150. Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. Isme J 2017;11:166–175 [CrossRef][PubMed]
    [Google Scholar]
  151. Bertsova YV, Bogachev AV. Operation of the cbb 3-type terminal oxidase in Azotobacter vinelandii. Biochemistry 2002;67:622–626 [CrossRef][PubMed]
    [Google Scholar]
  152. Erickson SK, Diehl H. The terminal oxidases of Azotobacter vinelandii. Biochem Biophys Res Commun 1973;50:321–327 [CrossRef][PubMed]
    [Google Scholar]
  153. Ackrell BA, Erickson SK, Jones CW. The respiratory-chain NADPH dehydrogenase of Azotobacter vinelandii. Eur J Biochem 1972;26:387–392 [CrossRef][PubMed]
    [Google Scholar]
  154. Rey L, Maier RJ. Cytochrome c terminal oxidase pathways of Azotobacter vinelandii: analysis of cytochrome c 4 and c 5 mutants and up-regulation of cytochrome c-dependent pathways with N2 fixation. J Bacteriol 1997;179:7191–7196 [CrossRef][PubMed]
    [Google Scholar]
  155. Ng TC, Laheri AN, Maier RJ, Tcn N, Cloning MRJ. Cloning, sequencing, and mutagenesis of the cytochrome c4 gene from Azotobacter vinelandii: characterization of the mutant strain and a proposed new branch in the respiratory chain. Biochim Biophys Acta 1995;1230:119–129[PubMed][Crossref]
    [Google Scholar]
  156. Kelly MJ, Poole RK, Yates MG, Kennedy C. Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 1990;172:6010–6019 [CrossRef][PubMed]
    [Google Scholar]
  157. Liu J, Lee F, Lin C, Yao X, Davenport JW et al. Alternative function of the electron transport system in Azotobacter vinelandii: removal of excess reductant by the cytochrome d pathway. Appl Environ Microbiol 1995;61:3998–4003[PubMed]
    [Google Scholar]
  158. Hoffman PS, Morgan TV, Dervartanian DV. Respiratory properties of cytochrome-c-deficient mutants of Azotobacter vinelandii. Eur J Biochem 1980;110:349–354 [CrossRef][PubMed]
    [Google Scholar]
  159. Bertsova YV, Bogachev AV, Skulachev VP. Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii. FEBS Lett 1997;414:369–372[PubMed][Crossref]
    [Google Scholar]
  160. Nutri-Tech Solutions Nutri-Life Bio-N Azotobacter. Agriculture solutions. 2012;www.agriculturesolutions.ca/bio-n-azotobacter-inoculants accessed 26 October 2016
  161. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 1997;7:737–750 [CrossRef]
    [Google Scholar]
  162. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci 2008;1:636–639 [CrossRef]
    [Google Scholar]
  163. Mulvaney RL, Khan SA, Ellsworth TR. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 2009;38:2295–2314 [CrossRef][PubMed]
    [Google Scholar]
  164. Hardy RW, Havelka UD. Nitrogen fixation research: a key to world food?. Science 1975;188:633–643 [CrossRef][PubMed]
    [Google Scholar]
  165. Vigorov LI. Conditions of Azotobacter acclimatization in turf-podzol soil and on wheat roots. Mikrobiologiia 1958;27:88–93
    [Google Scholar]
  166. Vela GR. Survival of Azotobacter in dry soil. Appl Microbiol 1974;28:77–79[PubMed]
    [Google Scholar]
  167. Iuzhina ZI. Survival of Azotobacter in cultivated and virgin soils of the Kola peninsula. Mikrobiologiia 1958;27:201–205[PubMed]
    [Google Scholar]
  168. Wu FJ, Moreno J, Vela GR. Growth of Azotobacter vinelandii on soil nutrients. Appl Environ Microbiol 1987;53:489–494[PubMed]
    [Google Scholar]
  169. Zinov’eva KG. Influence of root excretions and root extracts of some agricultural plants on Azotobacter. Mikrobiologiia 1958;27:74–80
    [Google Scholar]
  170. Kasa P, Modugapalem H, Battini K. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 2015;6:360–363 [CrossRef][PubMed]
    [Google Scholar]
  171. Beltran-Garcia MJ, White JF, Prado FM, Prieto KR, Yamaguchi LF et al. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep 2014;4:6938 [CrossRef][PubMed]
    [Google Scholar]
  172. Pankievicz VC, do Amaral FP, Santos KF, Agtuca B, Xu Y et al. Robust biological nitrogen fixation in a model grass-bacterial association. Plant J 2015;81:907–919 [CrossRef][PubMed]
    [Google Scholar]
  173. Kandel SL, Herschberger N, Kim SH, Doty SL. Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci 2015;55:1765–1772 [CrossRef]
    [Google Scholar]
  174. Ambrosio R, Ortiz-Marquez JCF, Curatti L. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metab Eng 2017;40:59–68 [CrossRef][PubMed]
    [Google Scholar]
  175. Bali A, Blanco G, Hill S, Kennedy C. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 1992;58:1711–1718[PubMed]
    [Google Scholar]
  176. Brewin B, Woodley P, Drummond M. The basis of ammonium release in nifL mutants of Azotobacter vinelandii. J Bacteriol 1999;181:7356–7362[PubMed]
    [Google Scholar]
  177. Gordon JK, Jacobson MR. Isolation and characterization of Azotobacter vinelandii mutant strains with potential as bacterial fertilizer. Can J Microbiol 1983;29:973–978 [CrossRef]
    [Google Scholar]
  178. Barney B. Biofertilizer from genetically-modified Azotobacter vinelandii - technology #20140348. University of Minnesota Office for Technology Commercialization. 2014; Available at:http://license.umn.edu/technologies/20140348_biofertilizer-from-genetically-modified-azotobacter-vinelandii [Accessed October 25, 2016]
  179. das HK, Bageshwar UK, Srivastava M. Recombinant nitrogen fixing microorganism and uses thereof. 2016; Available at:http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearchadv.htm&r=1&f=G&l=50&d=PTXT&S1=(nifL.CLTX.+or+nifL.DCTX.)&OS=ACLM/nifL&RS=ACLM/nifL [Accessed August 24, 2016]
  180. Burns TA, Bishop PE, Israel DW. Enhanced nodulation of leguminous plant roots by mixed cultures Azotobacter vinelandii and rhizobium. Plant Soil 1981;62:399–412 [CrossRef]
    [Google Scholar]
  181. Farajzadeh D, Yakhchali B, Aliasgharzad N, Sokhandan-Bashir N, Farajzadeh M. Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 2012;64:397–403 [CrossRef][PubMed]
    [Google Scholar]
  182. Fiorelli F, Pasetti L, Galli E. Fertility-promoting metabolites produced by Azotobacter vinelandii grown on olive-mill wastewaters. Int Biodeterior Biodegradation 1996;38:165–167 [CrossRef]
    [Google Scholar]
  183. Nosheen A, Bano A, Yasmin H, Keyani R, Habib R et al. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.). Front Plant Sci 2016;7:104 [CrossRef][PubMed]
    [Google Scholar]
  184. Khdhiri M, Piché-Choquette S, Tremblay J, Tringe SG, Constant P. The tale of a neglected energy source: elevated hydrogen exposure affects both microbial diversity and function in soil. Appl Environ Microbiol 2017;83:e00275-17 [CrossRef][PubMed]
    [Google Scholar]
  185. Bhosale HJ, Kadam TA, Bobade AR. Identification and production of Azotobacter vinelandii and its antifungal activity against Fusarium oxysporum. J Environ Biol 2013;34:177–182[PubMed]
    [Google Scholar]
  186. Gebgardt AG, Koval'chuk SI. Effect of introduction of Azotobacter on vitamin content in soil and oat shoots. Mikrobiologiia 1958;27:331–334[PubMed]
    [Google Scholar]
  187. Lemoigne M, Girard H. The lipidic beta-hydroxybutyric reserves in Azotobacter chroococcum. C R Hebd Seances Acad Sci 1943;217:557–558
    [Google Scholar]
  188. Forsyth WG, Hayward AC, Roberts JB. Occurrence of poly-beta-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 1958;182:800–801 [CrossRef][PubMed]
    [Google Scholar]
  189. Reusch RN, Sadoff HL. Lipid metabolism during encystment of Azotobacter vinelandii. J Bacteriol 1981;145:889–895[PubMed]
    [Google Scholar]
  190. Akaraonye E, Keshavarz T, Roy I. Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 2010;85:732–743 [CrossRef]
    [Google Scholar]
  191. Lee GN, Na J. Future of microbial polyesters. Microb Cell Fact 2013;12:54 [CrossRef][PubMed]
    [Google Scholar]
  192. Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 1990;54:450–472[PubMed]
    [Google Scholar]
  193. Mergaert J, Anderson C, Wouters A, Swings J, Kersters K. Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 1992;9:317–321 [CrossRef][PubMed]
    [Google Scholar]
  194. Page WJ. Bacterial polyhydroxyalkanoates, natural biodegradable plastics with a great future. Can J Microbiol 1995;41:1–3 [CrossRef]
    [Google Scholar]
  195. Ivanov SY, Bonartsev AP, Gazhva YV, Zharkova II, Mukhametshin RF et al. Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration. Biomed Khim 2015;61:717–723 [CrossRef][PubMed]
    [Google Scholar]
  196. Yang X, Zhao K, Chen GQ. Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials 2002;23:1391–1397 [CrossRef][PubMed]
    [Google Scholar]
  197. Bonartsev AP, Yakovlev SG, Zharkova II, Boskhomdzhiev AP, Bagrov DV et al. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem 2013;14:12 [CrossRef][PubMed]
    [Google Scholar]
  198. Saito T, Tomita K, Juni K, Ooba K. In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat. Biomaterials 1991;12:309–312 [CrossRef][PubMed]
    [Google Scholar]
  199. Sendil D, Gürsel I, Wise DL, Hasirci V. Antibiotic release from biodegradable PHBV microparticles. J Control Release 1999;59:207–217 [CrossRef][PubMed]
    [Google Scholar]
  200. Romo-Uribe A, Meneses-Acosta A, Domínguez-Díaz M. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds. Mater Sci Eng C Mater Biol Appl 2017;81:236–246 [CrossRef][PubMed]
    [Google Scholar]
  201. Pyla R, Kim TJ, Silva JL, Jung YS. Overproduction of poly-beta-hydroxybutyrate in the Azotobacter vinelandii mutant that does not express small RNA ArrF. Appl Microbiol Biotechnol 2009;84:717–724 [CrossRef][PubMed]
    [Google Scholar]
  202. Stevenson LH, Socolofsky MD. Cyst formation and poly-beta-hydroxybutyric acid accumulation in Azotobacter. J Bacteriol 1966;91:304–310[PubMed]
    [Google Scholar]
  203. Jackson FA, Dawes EA. Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. J Gen Microbiol 1976;97:303–312 [CrossRef][PubMed]
    [Google Scholar]
  204. Senior PJ, Dawes EA. Poly- -hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 1971;125:55–66 [CrossRef][PubMed]
    [Google Scholar]
  205. Page WJ, Tindale A, Chandra M, Kwon E. Alginate formation in Azotobacter vinelandii UWD during stationary phase and the turnover of poly-β-hydroxybutyrate. Microbiology 2001;147:483–490 [CrossRef][PubMed]
    [Google Scholar]
  206. Hernandez-Eligio A, Castellanos M, Moreno S, Espín G. Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS. Microbiology 2011;157:3014–3023 [CrossRef][PubMed]
    [Google Scholar]
  207. Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. The global regulators GacA and σS form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 2001;183:6787–6793 [CrossRef][PubMed]
    [Google Scholar]
  208. Castañeda M, Guzmán J, Moreno S, Espín G. The GacS sensor kinase regulates alginate and poly-β-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 2000;182:2624–2628 [CrossRef][PubMed]
    [Google Scholar]
  209. Hernandez-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C et al. RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology 2012;158:1953–1963 [CrossRef][PubMed]
    [Google Scholar]
  210. Trejo A, Moreno S, Cocotl-Yañez M, Espín G. GacA regulates the PTSNtr-dependent control of cyst formation in Azotobacter vinelandii. FEMS Microbiol Lett 2017;364:fnw278 [CrossRef][PubMed]
    [Google Scholar]
  211. Jung YS, Kwon YM. Small RNA ArrF regulates the expression of sodB and feSII genes in Azotobacter vinelandii. Curr Microbiol 2008;57:593–597 [CrossRef][PubMed]
    [Google Scholar]
  212. Wu G, Moir AJ, Sawers G, Hill S, Poole RK. Biosynthesis of poly-β-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobe Azotobacter vinelandii. FEMS Microbiol Lett 2001;194:215–220[PubMed]
    [Google Scholar]
  213. Cereda A, Carpen A, Picariello G, Iriti M, Faoro F et al. Effects of the deficiency of the rhodanese-like protein RhdA in Azotobacter vinelandii. FEBS Lett 2007;581:1625–1630 [CrossRef][PubMed]
    [Google Scholar]
  214. Segura D, Espín G. Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 1998;180:4790–4798[PubMed]
    [Google Scholar]
  215. Peña C, Miranda L, Segura D, Núñez C, Espín G et al. Alginate production by Azotobacter vinelandii mutants altered in poly-β-hydroxybutyrate and alginate biosynthesis. J Ind Microbiol Biotechnol 2002;29:209–213 [CrossRef][PubMed]
    [Google Scholar]
  216. Sillman CE, Casida LE. Cyst formation versus poly-β-hydroxybutyric acid accumulation in Azotobacter. Soil Biol Biochem 1986;18:23–28 [CrossRef]
    [Google Scholar]
  217. Núñez C, Moreno S, Soberón-Chávez G, Espín G. The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol 1999;181:141–148[PubMed]
    [Google Scholar]
  218. Gimmestad M, Ertesvåg H, Heggeset TM, Aarstad O, Svanem BI et al. Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 2009;191:4845–4853 [CrossRef][PubMed]
    [Google Scholar]
  219. Segura D, Cruz T, Espín G. Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-β-hydroxybutyrate synthesis. Arch Microbiol 2003;179:437–443 [CrossRef][PubMed]
    [Google Scholar]
  220. Segura D, Guzmán J, Espín G. Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 2003;63:159–163 [CrossRef][PubMed]
    [Google Scholar]
  221. Mejía MA, Segura D, Espín G, Galindo E, Peña C. Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-β-hydroxybutyrate (PHB) synthesis. J Appl Microbiol 2010;108:55–61 [CrossRef][PubMed]
    [Google Scholar]
  222. García A, Segura D, Espín G, Galindo E, Castillo T et al. High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 2014;82:117–123 [CrossRef]
    [Google Scholar]
  223. Page WJ, Cornish A. Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Environ Microbiol 1993;59:4236–4244[PubMed]
    [Google Scholar]
  224. Chen G-Q, Page WJ. Production of poly-β-hydroxybutyrate by Azotobacter vinelandii in a two-stage fermentation process. Biotechnol Tech 1997;11:347–350 [CrossRef]
    [Google Scholar]
  225. Cerrone F, Sánchez-Peinado MM, Juárez-Jimenez B, González-López J, Pozo C. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by Azotobacter strains. J Microbiol Biotechnol 2010;20:594–601[PubMed]
    [Google Scholar]
  226. Cho K, Ryu HW, Park C, Goodrich PR. Utilization of swine wastewater as a feedstock for the production of polyhydroxyalkanoates by Azotobacter vinelandii UWD. J Biosci Bioeng 2001;91:129–133 [CrossRef][PubMed]
    [Google Scholar]
  227. Dhanasekar R, Viruthagiri T, Sabarathinam P. Biosynthesis of poly (3-hydroxybutyrate) from cheese whey using Azotobacter vinelandii. Indian J Chem Technol 2001;8:68–71
    [Google Scholar]
  228. Pagliano G, Ventorino V, Panico A, Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 2017;10:113 [CrossRef][PubMed]
    [Google Scholar]
  229. Ryu HW, Cho KS, Goodrich PR, Park C-H. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnology and Bioprocess Engineering 2008;13:651–658 [CrossRef]
    [Google Scholar]
  230. Page WJ, Manchak J. The role of β-oxidation of short-chain alkanoates in polyhydroxyalkanoate copolymer synthesis in Azotobacter vinelandii UWD. Can J Microbiol 1995;41:106–114 [CrossRef]
    [Google Scholar]
  231. Fialho AM, Zielinski NA, Fett WF, Chakrabarty AM, Berry A. Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes. Appl Environ Microbiol 1990;56:436–443[PubMed]
    [Google Scholar]
  232. Beale JM, Foster JL. Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB 8789: NMR investigations of the triose pools. Biochemistry 1996;35:4492–4501 [CrossRef][PubMed]
    [Google Scholar]
  233. Steigedal M, Sletta H, Moreno S, Maerk M, Christensen BE et al. The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation. Environ Microbiol 2008;10:1760–1770 [CrossRef][PubMed]
    [Google Scholar]
  234. Page WJ. Formation of cystlike structures by iron-limited Azotobacter vinelandii strain UW during prolonged storage. Can J Microbiol 1983;29:1110–1118 [CrossRef]
    [Google Scholar]
  235. Martínez-Salazar JM, Moreno S, Nájera R, Boucher JC, Espín G et al. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 1996;178:1800–1808 [CrossRef][PubMed]
    [Google Scholar]
  236. Ahumada-Manuel CL, Guzmán J, Peña C, Quiroz-Rocha E, Espín G et al. The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Appl Microbiol Biotechnol 2017;101:1521–1534 [CrossRef][PubMed]
    [Google Scholar]
  237. Manzo J, Cocotl-Yañez M, Tzontecomani T, Martínez VM, Bustillos R et al. Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii. J Mol Microbiol Biotechnol 2011;21:147–159 [CrossRef][PubMed]
    [Google Scholar]
  238. Yao B, Ni C, Xiong C, Zhu C, Huang B. Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 2010;33:457–463 [CrossRef][PubMed]
    [Google Scholar]
  239. Rehm BH, Valla S. Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 1997;48:281–288 [CrossRef][PubMed]
    [Google Scholar]
  240. Fischer M, Gebhard F, Hammer T, Zurek C, Meurer G et al. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin. J Biomater Appl 2017;31:1267–1276 [CrossRef][PubMed]
    [Google Scholar]
  241. Bashan Y. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 1986;51:1089–1098[PubMed]
    [Google Scholar]
  242. Galindo E, Peña C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007;6:7 [CrossRef][PubMed]
    [Google Scholar]
  243. Díaz-Barrera A, Silva P, Avalos R, Acevedo F. Alginate molecular mass produced by Azotobacter vinelandii in response to changes of the O2 transfer rate in chemostat cultures. Biotechnol Lett 2009;31:825–829 [CrossRef][PubMed]
    [Google Scholar]
  244. Peña C, Trujillo-Roldán MA, Galindo E. Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii*. Enzyme Microb Technol 2000;27:390–398 [CrossRef][PubMed]
    [Google Scholar]
  245. Peña C, Galindo E, Büchs J. The viscosifying power, degree of acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Process Biochem 2011;46:290–297 [CrossRef]
    [Google Scholar]
  246. Trujillo-Roldán MA, Peña C, Ramírez OT, Galindo E. Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnol Prog 2001;17:1042–1048 [CrossRef][PubMed]
    [Google Scholar]
  247. Díaz-Barrera A, Maturana N, Pacheco-Leyva I, Martínez I, Altamirano C. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions. J Ind Microbiol Biotechnol 2017;44:1041–1051 [CrossRef][PubMed]
    [Google Scholar]
  248. Peña C, Millán M, Galindo E. Production of alginate by Azotobacter vinelandii in a stirred fermentor simulating the evolution of power input observed in shake flasks. Process Biochem 2008;43:775–778 [CrossRef]
    [Google Scholar]
  249. Seáñez G, Peña C, Galindo E. High CO2 affects alginate production and prevents polymer degradation in cultures of Azotobacter vinelandii. Enzyme Microb Technol 2001;29:535–540 [CrossRef]
    [Google Scholar]
  250. Peña C, Hernández L, Galindo E. Manipulation of the acetylation degree of Azotobacter vinelandii alginate by supplementing the culture medium with 3-(N-morpholino)-propane-sulfonic acid. Lett Appl Microbiol 2006;43:200–204 [CrossRef][PubMed]
    [Google Scholar]
  251. Núñez C, Peña C, Kloeckner W, Hernández-Eligio A, Bogachev AV et al. Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl Microbiol Biotechnol 2013;97:2503–2512 [CrossRef][PubMed]
    [Google Scholar]
  252. Trujillo-Roldán MA, Moreno S, Segura D, Galindo E, Espín G. Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl Microbiol Biotechnol 2003;60:733–737 [CrossRef][PubMed]
    [Google Scholar]
  253. Stanisci A, Aarstad OA, Tøndervik A, Sletta H, Dypås LB et al. Overall size of mannuronan C5-Epimerases influences their ability to epimerize modified alginates and alginate gels. Carbohydr Polym 2018;180:256–263 [CrossRef][PubMed]
    [Google Scholar]
  254. Hardy RW, Knight E. ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta 1967;139:69–90 [CrossRef][PubMed]
    [Google Scholar]
  255. Madden MS, Kindon ND, Ludden PW, Shah VK. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor. Proc Natl Acad Sci USA 1990;87:6517–6521 [CrossRef][PubMed]
    [Google Scholar]
  256. Fisher K, Dilworth MJ, Newton WE. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction. Biochemistry 2006;45:4190–4198 [CrossRef][PubMed]
    [Google Scholar]
  257. Kargi F, Ozmihçi S. Batch biological treatment of nitrogen deficient synthetic wastewater using Azotobacter supplemented activated sludge. Bioresour Technol 2004;94:113–117 [CrossRef][PubMed]
    [Google Scholar]
  258. Ehaliotis C, Papadopoulou K, Kotsou M, Mari I, Balis C. Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol Ecol 1999;30:301–311 [CrossRef][PubMed]
    [Google Scholar]
  259. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci USA 2009;106:17071–17076 [CrossRef][PubMed]
    [Google Scholar]
  260. D'Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 2010;17:254–264 [CrossRef][PubMed]
    [Google Scholar]
  261. Ortiz-Marquez JC, do Nascimento M, Curatti L. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 2014;23:154–164 [CrossRef][PubMed]
    [Google Scholar]
  262. Smith MJ, Francis MB. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth Biol 2016;5:955–961 [CrossRef][PubMed]
    [Google Scholar]
  263. Smith MJ, Francis MB. Improving metabolite production in microbial co-cultures using a spatially constrained hydrogel. Biotechnol Bioeng 2017;114:1195–1200 [CrossRef][PubMed]
    [Google Scholar]
  264. Jang CH, Piao YL, Huang X, Yoon EJ, Park SH et al. Modeling and re-engineering of Azotobacter vinelandii alginate lyase to enhance Its catalytic efficiency for accelerating biofilm degradation. PLoS One 2016;11:e0156197 [CrossRef][PubMed]
    [Google Scholar]
  265. Murugesan S, Iyyaswami R, Kumar SV, Surendran A. Anionic surfactant based reverse micellar extraction of L-asparaginase synthesized by Azotobacter vinelandii. Bioprocess Biosyst Eng 2017;40:1163–1171 [CrossRef][PubMed]
    [Google Scholar]
  266. Adams MW, Mortenson LE, Chen JS. Hydrogenase. Biochim Biophys Acta 1980;594:105–176 [CrossRef][PubMed]
    [Google Scholar]
  267. Walker CC, Yates MG. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie 1978;60:225–231 [CrossRef][PubMed]
    [Google Scholar]
  268. Walker CC, Partridge CDP, Yates MG. The effect of nutrient limitation on hydrogen production by nitrogenase in continuous cultures of Azotobacter chroococcum. Microbiology 1981;124:317–327 [CrossRef]
    [Google Scholar]
  269. Wong TY, Maier RJ. H 2 -dependent mixotrophic growth of N 2 -fixing Azotobacter vinelandii. J Bacteriol 1985;163:528–533[PubMed]
    [Google Scholar]
  270. Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci USA 2015;112:2337–2342 [CrossRef][PubMed]
    [Google Scholar]
  271. Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Biochem J 1987;244:197–207 [CrossRef][PubMed]
    [Google Scholar]
  272. Linkerhägner K, Oelze J. Hydrogenase does not confer significant benefits to Azotobacter vinelandii growing diazotrophically under conditions of glucose limitation. J Bacteriol 1995;177:6018–6020 [CrossRef][PubMed]
    [Google Scholar]
  273. Aguilar OM, Yates MG, Postgate JR. The beneficial effect of hydrogenase in Azotobacter chroococcum under nitrogen-fixing, carbon-limiting conditions in continuous and batch cultures. Microbiology 1985;131:3141–3145 [CrossRef]
    [Google Scholar]
  274. Wilson JB, Wilson PW. Action of inhibitors on hydrogenase in Azotobacter. J Gen Physiol 1943;26:277–286 [CrossRef][PubMed]
    [Google Scholar]
  275. Suzuki T, Maruyama Y, Nakamura M. Hydrogen uptake and methylene blue reduction activities of hydrogenase in Azotobacter agile. Agric Biol Chem 1979;43:2067–2073 [CrossRef]
    [Google Scholar]
  276. Partridge CD, Yates MG. Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Evidence that nickel is required for hydrogenase synthesis. Biochem J 1982;204:339–344 [CrossRef][PubMed]
    [Google Scholar]
  277. Bishop PE, Hawkins ME, Eady RR. Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochem J 1986;238:437–442 [CrossRef][PubMed]
    [Google Scholar]
  278. Scott DJ, Dean DR, Newton WE. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. J Biol Chem 1992;267:20002–20010[PubMed]
    [Google Scholar]
  279. Fisher K, Dilworth MJ, Kim CH, Newton WE. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Biochemistry 2000;39:2970–2979 [CrossRef][PubMed]
    [Google Scholar]
  280. Fisher K, Dilworth MJ, Newton WE. Differential effects on N2 binding and reduction, HD formation, and azide reduction with alpha-195His- and α-191Gln-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Biochemistry 2000;39:15570–15577[PubMed][Crossref]
    [Google Scholar]
  281. Hiller CJ, Stiebritz MT, Lee CC, Liedtke J, Hu Y. Tuning electron flux through nitrogenase with methanogen iron protein homologues. Chem Eur J 2017;23:16152–16156 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000643
Loading
/content/journal/micro/10.1099/mic.0.000643
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error