1887

Abstract

Mitochondrial gene expression is essential for adenosine triphosphate synthesis via oxidative phosphorylation, which is the universal energy currency of cells. Here, we report the identification and characterization of a homologue of Mtf2 (also called Nam1) in . The Δ mutant with the intron-containing mitochondrial DNA (mtDNA) exhibited impaired growth on a rich medium containing the non-fermentable carbon source glycerol, suggesting that is involved in mitochondrial function. deletion in a mitochondrial intron-containing background resulted in a barely detectable level of the mRNA and a reduction in the level of the mRNA, and severely impaired translation. In contrast, deletion in a mitochondrial intron-less background did not affect the levels of and mRNAs. However, Cox1 synthesis could not be restored to the control level in the Δ mutant with intron-less mtDNA. Our results suggest that unlike its counterpart in which plays a general role in synthesis of mtDNA-encoded proteins, Mtf2 primarily functions in translation and the effect of deletion on splicing of introns in mtDNA is likely due to a deficiency in the synthesis of intron-encoded maturases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000602
2018-03-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/3/400.html?itemId=/content/journal/micro/10.1099/mic.0.000602&mimeType=html&fmt=ahah

References

  1. Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab 2017;25:57–71 [CrossRef][PubMed]
    [Google Scholar]
  2. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017;482:426–431 [CrossRef][PubMed]
    [Google Scholar]
  3. Forsburg SL. The best yeast?. Trends Genet 1999;15:340–344 [CrossRef][PubMed]
    [Google Scholar]
  4. Schäfer B. RNA maturation in mitochondria of S. cerevisiae and S. pombe. Gene 2005;354:80–85 [CrossRef][PubMed]
    [Google Scholar]
  5. Schäfer B, Hansen M, Lang BF. Transcription and RNA-processing in fission yeast mitochondria. RNA 2005;11:785–795 [CrossRef][PubMed]
    [Google Scholar]
  6. Bendich AJ. The end of the circle for yeast mitochondrial DNA. Mol Cell 2010;39:831–832 [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhold JM, Aun A, Sedman T, Jõers P, Sedman J. Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication. Mol Cell 2010;39:851–861 [CrossRef][PubMed]
    [Google Scholar]
  8. Anziano PQ, Perlman PS, Lang BF, Wolf K. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe : I. isolation and physical mapping of mitochondrial DNA. Curr Genet 1983;7:273–284 [CrossRef][PubMed]
    [Google Scholar]
  9. Bullerwell CE, Leigh J, Forget L, Lang BF. A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 2003;31:759–768 [CrossRef][PubMed]
    [Google Scholar]
  10. Trinkl H, Lang BF, Wolf K. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. 7. Continuous gene for apocytochrome b in strain EF1 (CBS 356) and sequence variation in the region of intron insertion in strain ade 7-50h. Mol Gen Genet 1985;198:360–363[PubMed][Crossref]
    [Google Scholar]
  11. Gan X, Yang J, Li J, Yu H, Dai H et al. The fission yeast Schizosaccharomyces pombe has two distinct tRNase ZLs encoded by two different genes and differentially targeted to the nucleus and mitochondria. Biochem J 2011;435:103–111 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhang X, Zhao Q, Huang Y. Partitioning of the nuclear and mitochondrial tRNA 3'-end processing activities between two different proteins in Schizosaccharomyces pombe. J Biol Chem 2013;288:27415–27422 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhao Z, Su W, Yuan S, Huang Y. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Biochem J 2009;422:483–492 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu J, Huang L, Wang Y, Huang Y. Characterization of cis-elements in the promoter of trz2 encoding Schizosaccharomyces pombe mitochondrial tRNA 3'-end processing enzyme. Microbiology 2016;163:75–85 [CrossRef][PubMed]
    [Google Scholar]
  15. Hoffmann B, Nickel J, Speer F, Schafer B. The 3' ends of mature transcripts are generated by a processosome complex in fission yeast mitochondria. J Mol Biol 2008;377:1024–1037 [CrossRef][PubMed]
    [Google Scholar]
  16. Foury F, Roganti T, Lecrenier N, Purnelle B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 1998;440:325–331 [CrossRef][PubMed]
    [Google Scholar]
  17. Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends Genet 2007;23:119–125 [CrossRef][PubMed]
    [Google Scholar]
  18. Tzagoloff A, Myers AM. Genetics of mitochondrial biogenesis. Annu Rev Biochem 1986;55:249–285 [CrossRef][PubMed]
    [Google Scholar]
  19. Lambowitz AM, Belfort M. Introns as mobile genetic elements. Annu Rev Biochem 1993;62:587–622 [CrossRef][PubMed]
    [Google Scholar]
  20. Pellenz S, Harington A, Dujon B, Wolf K, Schäfer B. Characterization of the I-Spom I endonuclease from fission yeast: insights into the evolution of a group I intron-encoded homing endonuclease. J Mol Evol 2002;55:302–313 [CrossRef][PubMed]
    [Google Scholar]
  21. Schäfer B, Gan L, Perlman PS. Reverse transcriptase and reverse splicing activities encoded by the mobile group II intron cobI1 of fission yeast mitochondrial DNA. J Mol Biol 2003;329:191–206 [CrossRef][PubMed]
    [Google Scholar]
  22. Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome–from genetics to evolution and systems biology. Biochim Biophys Acta 2010;1797:1086–1098 [CrossRef][PubMed]
    [Google Scholar]
  23. Bousquet I, Dujardin G, Poyton RO, Slonimski PP. Two group I mitochondrial introns in the cob-box and coxI genes require the same MRS1/PET157 nuclear gene product for splicing. Curr Genet 1990;18:117–124 [CrossRef][PubMed]
    [Google Scholar]
  24. de Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N et al. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 2017;45:6628–6643 [CrossRef][PubMed]
    [Google Scholar]
  25. Potratz JP, del Campo M, Wolf RZ, Lambowitz AM, Russell R. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J Mol Biol 2011;411:661–679 [CrossRef][PubMed]
    [Google Scholar]
  26. Conrad-Webb H, Perlman PS, Zhu H, Butow RA. The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res 1990;18:1369–1376 [CrossRef][PubMed]
    [Google Scholar]
  27. Watts T, Khalimonchuk O, Wolf RZ, Turk EM, Mohr G et al. Mne1 is a novel component of the mitochondrial splicing apparatus responsible for processing of a COX1 group I intron in yeast. J Biol Chem 2011;286:10137–10146 [CrossRef][PubMed]
    [Google Scholar]
  28. Turk EM, Caprara MG. Splicing of yeast aI5β group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP). J Biol Chem 2010;285:8585–8594 [CrossRef][PubMed]
    [Google Scholar]
  29. Sarkar J, Poruri K, Boniecki MT, McTavish KK, Martinis SA. Yeast mitochondrial leucyl-tRNA synthetase CP1 domain has functionally diverged to accommodate RNA splicing at expense of hydrolytic editing. J Biol Chem 2012;287:14772–14781 [CrossRef][PubMed]
    [Google Scholar]
  30. Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 2016;85:77–101 [CrossRef][PubMed]
    [Google Scholar]
  31. Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim Biophys Acta 2013;1833:286–294 [CrossRef][PubMed]
    [Google Scholar]
  32. Smits P, Smeitink J, van den Heuvel L. Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010;2010:1–24 [CrossRef][PubMed]
    [Google Scholar]
  33. Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T et al. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2014;100:132–140 [CrossRef][PubMed]
    [Google Scholar]
  34. Kühl I, Dujeancourt L, Gaisne M, Herbert CJ, Bonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res 2011;39:8029–8041 [CrossRef][PubMed]
    [Google Scholar]
  35. Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 2010;21:1315–1323 [CrossRef][PubMed]
    [Google Scholar]
  36. Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB et al. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 2012;31:443–456 [CrossRef][PubMed]
    [Google Scholar]
  37. Chujo T, Ohira T, Sakaguchi Y, Goshima N, Nomura N et al. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res 2012;40:8033–8047 [CrossRef][PubMed]
    [Google Scholar]
  38. Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 2009;41:833–837 [CrossRef][PubMed]
    [Google Scholar]
  39. Richman TR, Spåhr H, Ermer JA, Davies SM, Viola HM et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016;7:11884 [CrossRef][PubMed]
    [Google Scholar]
  40. Asher EB, Groudinsky O, Dujardin G, Altamura N, Kermorgant M et al. Novel class of nuclear genes involved in both mRNA splicing and protein synthesis in Saccharomyces cerevisiae mitochondria. Mol Gen Genet 1989;215:517–528 [CrossRef][PubMed]
    [Google Scholar]
  41. Rodeheffer MS, Shadel GS. Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 2003;278:18695–18701 [CrossRef][PubMed]
    [Google Scholar]
  42. Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 1998;14:943–951 [CrossRef][PubMed]
    [Google Scholar]
  43. Wang Y, Yan J, Zhang Q, Ma X, Zhang J et al. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017;45:3323–3340 [CrossRef][PubMed]
    [Google Scholar]
  44. Chiron S, Gaisne M, Guillou E, Belenguer P, Clark-Walker GD et al. Studying mitochondria in an attractive model: Schizosaccharomyces pombe. Methods Mol Biol 2007;372:91–105 [CrossRef][PubMed]
    [Google Scholar]
  45. Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. Febs J 2017;284:324–337 [CrossRef][PubMed]
    [Google Scholar]
  46. Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 1991;194:795–823[PubMed][Crossref]
    [Google Scholar]
  47. Gouget K, Verde F, Barrientos A. In vivo labeling and analysis of mitochondrial translation products in budding and in fission yeasts. Methods Mol Biol 2008;457:113–124[PubMed][Crossref]
    [Google Scholar]
  48. Meisinger C, Pfanner N, Truscott KN. Isolation of yeast mitochondria. Methods Mol Biol 2006;313:33–39 [CrossRef][PubMed]
    [Google Scholar]
  49. Zuin A, Gabrielli N, Calvo IA, García-Santamarina S, Hoe KL et al. Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. PLoS One 2008;3:e2842 [CrossRef][PubMed]
    [Google Scholar]
  50. Kühl I, Fox TD, Bonnefoy N. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis. Mitochondrion 2012;12:381–390 [CrossRef][PubMed]
    [Google Scholar]
  51. Dujeancourt L, Richter R, Chrzanowska-Lightowlers ZM, Bonnefoy N, Herbert CJ. Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria. Mitochondrion 2013;13:871–880 [CrossRef][PubMed]
    [Google Scholar]
  52. Wiley DJ, Catanuto P, Fontanesi F, Rios C, Sanchez N et al. Bot1p is required for mitochondrial translation, respiratory function, and normal cell morphology in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2008;7:619–629 [CrossRef][PubMed]
    [Google Scholar]
  53. Clark TA, Sugnet CW, Ares M. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002;296:907–910 [CrossRef][PubMed]
    [Google Scholar]
  54. Schäfer B, Merlos-Lange AM, Anderl C, Welser F, Zimmer M et al. The mitochondrial genome of fission yeast: inability of all introns to splice autocatalytically, and construction and characterization of an intronless genome. Mol Gen Genet 1991;225:158–167 [CrossRef][PubMed]
    [Google Scholar]
  55. Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000;64:281–315 [CrossRef][PubMed]
    [Google Scholar]
  56. Groudinsky O, Bousquet I, Wallis MG, Slonimski PP, Dujardin G. The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of the atp6 and of the mosaic, cox1 and cytb genes in Saccharomyces cerevisiae. Mol Gen Genet 1993;240:419–427[PubMed]
    [Google Scholar]
  57. Rodeheffer MS, Boone BE, Bryan AC, Shadel GS. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem 2001;276:8616–8622 [CrossRef][PubMed]
    [Google Scholar]
  58. Bryan AC, Rodeheffer MS, Wearn CM, Shadel GS. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression. Genetics 2002;160:75–82[PubMed]
    [Google Scholar]
  59. Barrientos A, Zambrano A, Tzagoloff A. Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 2004;23:3472–3482 [CrossRef][PubMed]
    [Google Scholar]
  60. Perez-Martinez X, Broadley SA, Fox TD. Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J 2003;22:5951–5961 [CrossRef][PubMed]
    [Google Scholar]
  61. Roloff GA, Henry MF. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2015;26:2885–2894 [CrossRef][PubMed]
    [Google Scholar]
  62. Kim DU, Hayles J, Kim D, Wood V, Park HO et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2010;28:617–623 [CrossRef][PubMed]
    [Google Scholar]
  63. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  64. van Horn DJ, Yoo CJ, Xue D, Shi H, Wolin SL. The La protein in Schizosaccharomyces pombe: a conserved yet dispensable phosphoprotein that functions in tRNA maturation. RNA 1997;3:1434–1443[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000602
Loading
/content/journal/micro/10.1099/mic.0.000602
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error