1887

Abstract

Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000463
2017-05-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/5/623.html?itemId=/content/journal/micro/10.1099/mic.0.000463&mimeType=html&fmt=ahah

References

  1. Litchfield CD. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 1998;33:813–819 [CrossRef][PubMed]
    [Google Scholar]
  2. DasSarma S, Arora P. Halophiles. In: Encyclopedia of Life Science Nature Publishing Group; 2001
    [Google Scholar]
  3. Kushner DJ, Kamekura M. Physiology of halophilic eubacteria. Halophilic Bacteria 1988;1:109–140
    [Google Scholar]
  4. Galinski EA, Trãüper HG, Trüper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 1994;15:95–108 [CrossRef]
    [Google Scholar]
  5. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998;62:504–544[PubMed]
    [Google Scholar]
  6. Brown A. Microbial water stress. Bacteriol Rev 1976;40:803[PubMed]
    [Google Scholar]
  7. Oren A, Rodríguez-Valera F. The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 2001;36:123–130 [CrossRef][PubMed]
    [Google Scholar]
  8. Hezayen FF, Rehm BH, Tindall BJ, Steinbüchel A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the archaea from Egypt that produces extracellular poly (glutamic acid). Int J Syst Evol Microbiol 2001;51:1133–1142 [CrossRef][PubMed]
    [Google Scholar]
  9. Zerulla K, Soppa J. Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 2014;5:274 [CrossRef][PubMed]
    [Google Scholar]
  10. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L et al. N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014;78:304–341 [CrossRef][PubMed]
    [Google Scholar]
  11. Guan Z, Naparstek S, Calo D, Eichler J. Protein glycosylation as an adaptive response in archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ Microbiol 2012;14:743–753 [CrossRef][PubMed]
    [Google Scholar]
  12. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015;65:1050–1069 [CrossRef][PubMed]
    [Google Scholar]
  13. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  14. Yang Y, Cui HL, Zhou PJ, Liu SJ. Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2006;56:2353–2355 [CrossRef][PubMed]
    [Google Scholar]
  15. Han D, Cui HL. Halobacterium rubrum sp. nov., isolated from a marine solar saltern. Arch Microbiol 2014;196:847–851 [CrossRef][PubMed]
    [Google Scholar]
  16. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G et al. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 2004;8:431–439 [CrossRef][PubMed]
    [Google Scholar]
  17. Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. In: Bergey's Manual of Systematic Bacteriology New York: Springer; 2004
    [Google Scholar]
  18. Cui HL, Gao X, Yang X, Xu XW, X-w X. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010;14:493–499 [CrossRef][PubMed]
    [Google Scholar]
  19. Xu WD, Zhang WJ, Han D, Cui HL, Yang K. Halorussus ruber sp. nov., isolated from an inland salt lake of China. Arch Microbiol 2015;197:91–95 [CrossRef][PubMed]
    [Google Scholar]
  20. Yuan PP, Ye WT, Pan JX, Han D, Zhang WJ et al. Halorussus amylolyticus sp. nov., isolated from an inland salt lake. Int J Syst Evol Microbiol 2015;65:3734–3738 [CrossRef][PubMed]
    [Google Scholar]
  21. Savage KN, Krumholz LR, Oren A, Elshahed MS. Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 2007;57:19–24 [CrossRef][PubMed]
    [Google Scholar]
  22. Cui HL, Sun FF, Gao X, Dong Y, Xu XW et al. Haladaptatus litoreus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haladaptatus. Int J Syst Evol Microbiol 2010;60:1085–1089 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu BB, Zhao WY, Chu X, Hozzein WN, Prabhu DM et al. Haladaptatus pallidirubidus sp. nov., a halophilic archaeon isolated from saline soil samples in Yunnan and Xinjiang, China. Antonie van Leeuwenhoek 2014;106:901–910 [CrossRef][PubMed]
    [Google Scholar]
  24. Roh SW, Lee ML, Bae JW. Haladaptatus cibarius sp. nov., an extremely halophilic archaeon from seafood, and emended description of the genus Haladaptatus. Int J Syst Evol Microbiol 2010;60:1187–1190 [CrossRef][PubMed]
    [Google Scholar]
  25. Roh SW, Nam YD, Chang HW, Sung Y, Kim KH et al. Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2007;57:2296–2298 [CrossRef][PubMed]
    [Google Scholar]
  26. Liu BB, Tang SK, Zhang YG, Lu XH, Li L et al. Halalkalicoccus paucihalophilus sp. nov., a halophilic archaeon from Lop Nur region in Xinjiang, northwest of China. Antonie van Leeuwenhoek 2013;103:1007–1014 [CrossRef][PubMed]
    [Google Scholar]
  27. Xue Y, Fan H, Ventosa A, Grant WD, Jones BE et al. Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 2005;55:2501–2505 [CrossRef][PubMed]
    [Google Scholar]
  28. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 2010;60:2513–2516 [CrossRef][PubMed]
    [Google Scholar]
  29. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Kamekura M et al. Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples. Int J Syst Evol Microbiol 2013;63:3143–3147 [CrossRef][PubMed]
    [Google Scholar]
  30. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Shimoshige H et al. Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 2013;63:1138–1142 [CrossRef][PubMed]
    [Google Scholar]
  31. Saralov AI, Baslerov RV, Reutskikh EM, Kuznetsov BB. Halarchaeum solikamskense sp. nov., a thermotolerant neutrophilic haloarchaeon from the foamy products of flotation enrichment of potassium minerals. Microbiology 2012;81:589–595 [CrossRef]
    [Google Scholar]
  32. Minegishi H, Yamauchi Y, Echigo A, Shimane Y, Kamekura M et al. Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 2013;63:4202–4206 [CrossRef][PubMed]
    [Google Scholar]
  33. Yuan PP, Sun XJ, Liang X, Chen XJ, Han D et al. Haloarchaeobius amylolyticus sp. nov., isolated from a marine solar saltern. Arch Microbiol 2015;197:949–953 [CrossRef][PubMed]
    [Google Scholar]
  34. Yuan PP, Zhang WJ, Han D, Cui HL. Haloarchaeobius salinus sp. nov., isolated from an inland salt lake, and emended description of the genus Haloarchaeobius. Int J Syst Evol Microbiol 2015;65:910–914 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang W-J, Cui H-L. Haloarchaeobius litoreus sp. nov., isolated from a marine solar saltern. Antonie van Leeuwenhoek 2014;105:1085–1090[CrossRef]
    [Google Scholar]
  36. Mori K, Nurcahyanto DA, Kawasaki H, Lisdiyanti P, Yopi et al. Haloarchaeobius baliensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2016;66:38–43 [CrossRef][PubMed]
    [Google Scholar]
  37. Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M, Ramezani M, Ventosa A. Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 2012;62:1021–1026 [CrossRef][PubMed]
    [Google Scholar]
  38. Cui HL, Mou YZ, Yang X, Zhou YG, Liu HC et al. Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 2012;35:30–34 [CrossRef][PubMed]
    [Google Scholar]
  39. Inoue K, Itoh T, Ohkuma M, Kogure K. Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 2011;61:942–946 [CrossRef][PubMed]
    [Google Scholar]
  40. Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A et al. Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 2010;60:2529–2534 [CrossRef][PubMed]
    [Google Scholar]
  41. Shimane Y, Nagaoka S, Minegishi H, Kamekura M, Echigo A et al. Natronoarchaeum philippinense sp. nov., a haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 2013;63:920–924 [CrossRef][PubMed]
    [Google Scholar]
  42. Qiu XX, Zhao ML, Cui HL. Natronoarchaeum rubrum sp. nov., isolated from a marine solar saltern, and emended description of the genus Natronoarchaeum. Int J Syst Evol Microbiol 2014;64:952–956 [CrossRef][PubMed]
    [Google Scholar]
  43. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A. Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 2012;62:1331–1336 [CrossRef][PubMed]
    [Google Scholar]
  44. Han D, Zhang WJ, Cui HL, Li ZR. Halovenus rubra sp. nov., isolated from salted brown alga Laminaria. Curr Microbiol 2015;70:91–95 [CrossRef][PubMed]
    [Google Scholar]
  45. Infante-Domínguez C, Corral P, Sánchez-Porro C, Ventosa A. Halovenus salina sp. nov., an extremely halophilic archaeon isolated from a saltern. Int J Syst Evol Microbiol 2015;65:3016–3023 [CrossRef][PubMed]
    [Google Scholar]
  46. Kim TY, Kim SJ, Park SJ, Kim JG, Cha IT et al. Natronomonas gomsonensis sp. nov., isolated from a solar saltern. Antonie van Leeuwenhoek 2013;104:627–635 [CrossRef][PubMed]
    [Google Scholar]
  47. Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R et al. Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol 2010;60:1173–1176 [CrossRef][PubMed]
    [Google Scholar]
  48. Soliman GSH, Trüper HG. Halobacterium pharaonis sp. nov., a New, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zbl Bakt Mik Hyg I C 1982;3:318–329 [CrossRef]
    [Google Scholar]
  49. Shimane Y, Hatada Y, Minegishi H, Echigo A, Nagaoka S et al. Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea isolated from commercial salt. Int J Syst Evol Microbiol 2011;61:2266–2270 [CrossRef][PubMed]
    [Google Scholar]
  50. Cui HL, Qiu XX. Salinarubrum litoreum gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from Chinese marine solar salterns. Antonie van Leeuwenhoek 2014;105:135–141 [CrossRef][PubMed]
    [Google Scholar]
  51. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016;109:565–587 [CrossRef][PubMed]
    [Google Scholar]
  52. Gupta RS, Naushad S, Fabros R, Adeolu M. Erratum to: a phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam. nov. Antonie van Leeuwenhoek 2016;109:1521–1523 [CrossRef][PubMed]
    [Google Scholar]
  53. Ihara K, Watanabe S, Tamura T. Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 1997;47:73–77 [CrossRef][PubMed]
    [Google Scholar]
  54. Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 1990;40:209–210 [CrossRef][PubMed]
    [Google Scholar]
  55. Oren A, Ventosa A, Gutiérrez MC, Kamekura M. Haloarcula quadrata sp. nov., a square, motile archaeon isolated from a brine pool in Sinai (Egypt). Int J Syst Bacteriol 1999;49:1149–1155 [CrossRef][PubMed]
    [Google Scholar]
  56. Yang Y, Cui HL, Zhou PJ, Liu SJ. Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007;57:103–106 [CrossRef][PubMed]
    [Google Scholar]
  57. Namwong S, Tanasupawat S, Kudo T, Itoh T. Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. Int J Syst Evol Microbiol 2011;61:231–236 [CrossRef][PubMed]
    [Google Scholar]
  58. Juez G, Rodriguez-Valera F, Ventosa A, Kushner DJ. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec, nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 1986;8:75–79 [CrossRef]
    [Google Scholar]
  59. Takashina T, Hamamoto T, Otozai K, Grant WD, Horikoshi K. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst Appl Microbiol 1990;13:177–181 [CrossRef]
    [Google Scholar]
  60. Sánchez-Nieves R, Facciotti M, Saavedra-Collado S, Dávila-Santiago L, Rodríguez-Carrero R et al. Draft genome of Haloarcula rubripromontorii strain SL3, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico. Genom Data 2016;7:287–289 [CrossRef][PubMed]
    [Google Scholar]
  61. Yuan PP, Xu JQ, Xu WM, Wang Z, Yin S et al. Halosimplex litoreum sp. nov., isolated from a marine solar saltern. Antonie van Leeuwenhoek 2015;108:483–489 [CrossRef][PubMed]
    [Google Scholar]
  62. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD et al. Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 2002;6:445–452 [CrossRef][PubMed]
    [Google Scholar]
  63. Han D, Cui HL. Halosimplex pelagicum sp. nov. and Halosimplex rubrum sp. nov., isolated from salted brown alga laminaria, and emended description of the genus Halosimplex. Int J Syst Evol Microbiol 2014;64:169–173 [CrossRef][PubMed]
    [Google Scholar]
  64. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T et al. Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2013;63:3556–3562 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhang WJ, Cui HL. Halomicroarcula limicola sp. nov., isolated from a marine solar saltern, and emended description of the genus Halomicroarcula. Int J Syst Evol Microbiol 2014;64:1747–1751 [CrossRef][PubMed]
    [Google Scholar]
  66. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A. Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 2002;52:1831–1835 [CrossRef][PubMed]
    [Google Scholar]
  67. Yang X, Cui HL. Halomicrobium zhouii sp. nov., a halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 2012;62:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  68. Kharroub K, Lizama C, Aguilera M, Boulahrouf A, Campos V et al. Halomicrobium katesii sp. nov., an extremely halophilic archaeon. Int J Syst Evol Microbiol 2008;58:2354–2358 [CrossRef][PubMed]
    [Google Scholar]
  69. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF et al. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 2008;58:215–220 [CrossRef][PubMed]
    [Google Scholar]
  70. Wainø M, Tindall BJ, Ingvorsen K. Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 2000;50:183–190 [CrossRef][PubMed]
    [Google Scholar]
  71. Albuquerque L, Kowalewicz-Kulbat M, Drzewiecka D, Stączek P, D'Auria G et al. Halorhabdus rudnickae sp. nov., a halophilic archaeon isolated from a salt mine borehole in Poland. Syst Appl Microbiol 2016;39:100–105 [CrossRef][PubMed]
    [Google Scholar]
  72. Cui HL, Yang X, Gao X, Xu XW. Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 2011;61:2682–2689 [CrossRef][PubMed]
    [Google Scholar]
  73. Yuan PP, Yin S, Han D, Zhang WJ, Cui HL. Halorientalis brevis sp. nov., isolated from an Inland salt lake of China. Curr Microbiol 2015;71:382–386 [CrossRef][PubMed]
    [Google Scholar]
  74. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SA, Spröer C et al. Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. Int J Syst Evol Microbiol 2014;64:940–944 [CrossRef][PubMed]
    [Google Scholar]
  75. Song HS, Cha IT, Yim KJ, Lee HW, Hyun DW et al. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie van Leeuwenhoek 2014;105:979–986 [CrossRef][PubMed]
    [Google Scholar]
  76. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C et al. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian Alpine salt deposit. Int J Syst Evol Microbiol 2002;52:1807–1814 [CrossRef][PubMed]
    [Google Scholar]
  77. Montero CG, Ventosa A, Rodriguez-Valera F, Kates M, Moldoveanu N et al. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst Appl Microbiol 1989;12:167–171 [CrossRef]
    [Google Scholar]
  78. Wang QF, Li W, Yang H, Liu YL, Cao HH et al. Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 2007;57:600–604 [CrossRef][PubMed]
    [Google Scholar]
  79. Minegishi H, Echigo A, Shimane Y, Kamekura M, Itoh T et al. Halococcus agarilyticus sp. nov., an agar-degrading haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 2015;65:1634–1639 [CrossRef][PubMed]
    [Google Scholar]
  80. Yim KJ, Cha IT, Whon TW, Lee HW, Song HS et al. Halococcus sediminicola sp. nov., an extremely halophilic archaeon isolated from a marine sediment. Antonie van Leeuwenhoek 2014;105:73–79 [CrossRef][PubMed]
    [Google Scholar]
  81. Denner EBM, Mcgenity TJ, Busse H-J, Grant WD, Wanner G et al. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 1994;44:774–780 [CrossRef]
    [Google Scholar]
  82. Namwong S, Tanasupawat S, Visessanguan W, Kudo T, Itoh T. Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 2007;57:2199–2203 [CrossRef][PubMed]
    [Google Scholar]
  83. Srivastava P, Bragança J, Ramanan SR, Kowshik M. Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 2013;17:821–831 [CrossRef][PubMed]
    [Google Scholar]
  84. Patadia A, Dave BP. Isolation, screening and quantification of Poly-β-hydroxybutyrate (PHB) from extreme halophilic archaea. Int J Sci Res 2016;5:92–96
    [Google Scholar]
  85. Gonzalez RO, Higa LH, Cutrullis RA, Bilen M, Morelli I et al. Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy. BMC Biotechnol 2009;9:71 [CrossRef][PubMed]
    [Google Scholar]
  86. Cui HL, Gao X, Sun FF, Dong Y, Xu XW et al. Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010;60:1366–1371 [CrossRef][PubMed]
    [Google Scholar]
  87. Cui HL, Yang X, Gao X, Xu XW. Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum. Int J Syst Evol Microbiol 2011;61:911–915 [CrossRef][PubMed]
    [Google Scholar]
  88. Kim KK, Lee KC, Lee J-S. Halogranum salarium sp. nov., a halophilic archaeon isolated from sea salt. Syst Appl Microbiol 2011;34:576–580[CrossRef]
    [Google Scholar]
  89. Amoozegar MA, Makhdoumi-Kakhki A, Fazeli SAS, Azarbaijani R, Ventosa A et al. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 2012;62:1932–1936[CrossRef]
    [Google Scholar]
  90. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SAS, Ventosa A et al. Halopenitus malekzadehii nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 2013;63:3232–3236[CrossRef]
    [Google Scholar]
  91. Oren A, Gurevich P, Gemmell RT, Teske A. Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 1995;45:747–754 [CrossRef][PubMed]
    [Google Scholar]
  92. Shimoshige H, Yamada T, Minegishi H, Echigo A, Shimane Y et al. Halobaculum magnesiiphilum sp. nov., a magnesium-dependent haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 2013;63:861–866 [CrossRef][PubMed]
    [Google Scholar]
  93. Mou YZ, Qiu XX, Zhao ML, Cui HL, Oh D et al. Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 2012;16:895–901 [CrossRef][PubMed]
    [Google Scholar]
  94. Cui H-L, Gao X, Yang X, Xu XW. Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 2011;61:1617–1621 [CrossRef][PubMed]
    [Google Scholar]
  95. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013;63:4380–4385 [CrossRef][PubMed]
    [Google Scholar]
  96. Cha IT, Yim KJ, Song HS, Lee HW, Hyun DW et al. Halolamina rubra sp. nov., a haloarchaeon isolated from non-purified solar salt. Antonie van Leeuwenhoek 2014;105:907–914 [CrossRef][PubMed]
    [Google Scholar]
  97. Koh HW, Song HS, Song U, Yim KJ, Roh SW et al. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2015;65:2479–2484 [CrossRef][PubMed]
    [Google Scholar]
  98. Cui HL, Zhang WJ. Salinigranum rubrum gen. nov., sp. nov., a member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 2014;64:2029–2033 [CrossRef][PubMed]
    [Google Scholar]
  99. Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A et al. Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 2010;60:1196–1199 [CrossRef][PubMed]
    [Google Scholar]
  100. Xu XW, Wu YH, Wang CS, Oren A, Zhou PJ et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007;57:717–720 [CrossRef][PubMed]
    [Google Scholar]
  101. Allen MA, Goh F, Leuko S, Echigo A, Mizuki T et al. Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. Int J Syst Evol Microbiol 2008;58:798–802 [CrossRef][PubMed]
    [Google Scholar]
  102. Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L. Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 2007;57:393–397 [CrossRef][PubMed]
    [Google Scholar]
  103. Elshahed MS, Savage KN, Oren A, Gutierrez MC, Ventosa A et al. Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 2004;54:2275–2279 [CrossRef][PubMed]
    [Google Scholar]
  104. Asker D, Ohta Y. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int J Syst Evol Microbiol 2002;52:729–738 [CrossRef][PubMed]
    [Google Scholar]
  105. Saralov AI, Baslerov RV, Kuznetsov BB. Haloferax chudinovii sp. nov., a halophilic archaeon from Permian potassium salt deposits. Extremophiles 2013;17:499–504 [CrossRef][PubMed]
    [Google Scholar]
  106. Tomlinson G, Jahnke L, Hochstein L. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 1986;36:66–70 [CrossRef]
    [Google Scholar]
  107. Gutierrez MC, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A. Taxonomic characterization of Haloferax sp. (‘H. alicantei’) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 2002;6:479–483 [CrossRef][PubMed]
    [Google Scholar]
  108. Rodriguez-Valera F, Juez G, Kushner DJ. Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 1983;4:369–381 [CrossRef][PubMed]
    [Google Scholar]
  109. Mullakhanbhai MF, Larsen H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 1975;104:207–214 [CrossRef][PubMed]
    [Google Scholar]
  110. Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK et al. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 2014;18:463–470 [CrossRef][PubMed]
    [Google Scholar]
  111. Asker D, Ohta Y. Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 2002;58:743–750 [CrossRef][PubMed]
    [Google Scholar]
  112. Cui HL, Yang X, Zhou YG, Liu HC, Zhou PJ et al. Halobellus limi sp. nov. and Halobellus salinus sp. nov., isolated from two marine solar salterns. Int J Syst Evol Microbiol 2012;62:1307–1313 [CrossRef][PubMed]
    [Google Scholar]
  113. Qiu XX, Mou YZ, Zhao ML, Zhang WJ, Han D et al. Halobellus inordinatus sp. nov., from a marine solar saltern and an inland salt lake of China. Int J Syst Evol Microbiol 2013;63:3975–3980 [CrossRef][PubMed]
    [Google Scholar]
  114. Zhang WJ, Han D, Qiu XX, Zhao ML, Mou YZ et al. Halobellus rarus sp. nov., a halophilic archaeon from an inland salt lake of China. Antonie van Leeuwenhoek 2013;104:377–384 [CrossRef][PubMed]
    [Google Scholar]
  115. Cha IT, Yim KJ, Song HS, Lee HW, Hyun DW et al. Halobellus rufus sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie van Leeuwenhoek 2014;105:925–932 [CrossRef][PubMed]
    [Google Scholar]
  116. Zhao ML, Qiu XX, Zhang WJ, Han D, Cui HL et al. Halobellus litoreus sp. nov., a halophilic archaeon isolated from a Chinese marine solar saltern. Curr Microbiol 2014;68:156–160 [CrossRef][PubMed]
    [Google Scholar]
  117. Cui HL, Yang X, Gao X, Li XY, Xu XW et al. Halogeometricum rufum sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halogeometricum. Int J Syst Evol Microbiol 2010;60:2613–2617 [CrossRef][PubMed]
    [Google Scholar]
  118. Montalvo-Rodríguez R, Vreeland RH, Oren A, Kessel M, Betancourt C et al. Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 1998;48:1305–1312 [CrossRef][PubMed]
    [Google Scholar]
  119. Zhang X, Zhang WY, Shen AH, Huo YY, Zhu XF et al. Halopelagius longus sp. nov., a member of the family Halobacteriaceae isolated from a salt mine, and emended description of the genus Halopelagius. Int J Syst Evol Microbiol 2013;63:3585–3590 [CrossRef][PubMed]
    [Google Scholar]
  120. Liu BB, Tang SK, Cui HL, Zhang YG, Li L et al. Halopelagius fulvigenes sp. nov., a halophilic archaeon isolated from a lake. Int J Syst Evol Microbiol 2013;63:2192–2196 [CrossRef][PubMed]
    [Google Scholar]
  121. Cui HL, Li XY, Gao X, Xu XW, Zhou YG et al. Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010;60:2089–2093 [CrossRef][PubMed]
    [Google Scholar]
  122. Bardavid RE, Mana L, Oren A. Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 2007;57:780–783 [CrossRef][PubMed]
    [Google Scholar]
  123. Cui HL, Gao X, Li XY, Xu XW, Zhou YG et al. Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus. Int J Syst Evol Microbiol 2010;60:1824–1827 [CrossRef][PubMed]
    [Google Scholar]
  124. Cui HL, Gao X, Yang X, Xu XW. Haloplanus aerogenes sp. nov., an extremely halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 2011;61:965–968 [CrossRef][PubMed]
    [Google Scholar]
  125. Han D, Cui HL. Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov., from a marine solar saltern and an aquaculture farm, respectively. Antonie van Leeuwenhoek 2014;105:679–685 [CrossRef][PubMed]
    [Google Scholar]
  126. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL. Haloplanus salinus sp. nov., an extremely halophilic archaeon from a Chinese marine solar saltern. Arch Microbiol 2013;195:799–803 [CrossRef][PubMed]
    [Google Scholar]
  127. Savage KN, Krumholz LR, Oren A, Elshahed MS. Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 2008;58:856–860 [CrossRef][PubMed]
    [Google Scholar]
  128. Cui HL, Gao X, Li XY, Xu XW, Zhou YG et al. Halosarcina limi sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halosarcina. Int J Syst Evol Microbiol 2010;60:2462–3466 [CrossRef][PubMed]
    [Google Scholar]
  129. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z et al. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 2007;57:387–392 [CrossRef][PubMed]
    [Google Scholar]
  130. Tindall B, Ross H, Grant W. Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 1984;5:41–57 [CrossRef]
    [Google Scholar]
  131. Xu Y, Wang Z, Xue Y, Zhou P, Ma Y et al. Natrialba hulunbeirensis sp. nov. and Natrialba chahannaoensis sp. nov., novel haloalkaliphilic archaea from soda lakes in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 2001;51:1693–1698 [CrossRef][PubMed]
    [Google Scholar]
  132. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Natrinema ejinorense sp. nov., isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2006;56:2683–2687 [CrossRef][PubMed]
    [Google Scholar]
  133. Mcgenity TJ, Gemmell RT, Grant WD. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 1998;48:1187–1196 [CrossRef][PubMed]
    [Google Scholar]
  134. Tapingkae W, Tanasupawat S, Itoh T, Parkin KL, Benjakul S et al. Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 2008;58:2378–2383 [CrossRef][PubMed]
    [Google Scholar]
  135. Xu XW, Ren PG, Liu SJ, Wu M, Zhou PJ. Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun mountain in Xinjiang, China. Int J Syst Evol Microbiol 2005;55:1311–1314 [CrossRef][PubMed]
    [Google Scholar]
  136. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000;50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  137. Albuquerque L, Taborda M, La Cono V, Yakimov M, da Costa MS. Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic lake medee in the eastern Mediterranean Sea. Syst Appl Microbiol 2012;35:368–373 [CrossRef][PubMed]
    [Google Scholar]
  138. Karthikeyan P, Bhat SG, Chandrasekaran M. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J Biol Sci 2013;20:205–212 [CrossRef][PubMed]
    [Google Scholar]
  139. Ruiz-Romero E, Sánchez-López KB, de Los Angeles Coutiño-Coutiño M, González-Pozos S, Bello-López JM et al. Natronobacterium texcoconense sp. nov., a haloalkaliphilic archaeon isolated from soil of a former lake. Int J Syst Evol Microbiol 2013;63:4163–4166 [CrossRef][PubMed]
    [Google Scholar]
  140. Xin H, Itoh T, Zhou P, Suzuki K, Nakase T. Natronobacterium nitratireducens sp. nov., a aloalkaliphilic archaeon isolated from a soda lake in China. Int J Syst Evol Microbiol 2001;51:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  141. Ruiz-Romero E, Valenzuela-Encinas C, López-Ramírez MP, de Los Angeles Coutiño-Coutiño M, Marsch R et al. Natronorubrum texcoconense sp. nov., a haloalkaliphilic archaeon isolated from soil of the former Lake Texcoco (Mexico). Arch Microbiol 2013;195:145–151 [CrossRef][PubMed]
    [Google Scholar]
  142. Gutiérrez MC, Castillo AM, Corral P, Minegishi H, Ventosa A. Natronorubrum sediminis sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 2010;60:1802–1806 [CrossRef][PubMed]
    [Google Scholar]
  143. Cui HL, Tohty D, Feng J, Zhou PJ, Liu SJ. Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China, and emended description of the genus Natronorubrum. Int J Syst Evol Microbiol 2006;56:1515–1517 [CrossRef][PubMed]
    [Google Scholar]
  144. Cui HL, Tohty D, Liu HC, Liu SJ, Oren A et al. Natronorubrum sulfidifaciens sp. nov., an extremely haloalkaliphilic archaeon isolated from aiding salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007;57:738–740 [CrossRef][PubMed]
    [Google Scholar]
  145. Xu Y, Zhou P, Tian X. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 1999;49:261–266 [CrossRef][PubMed]
    [Google Scholar]
  146. Castillo AM, Gutiérrez MC, Kamekura M, Ma Y, Cowan DA et al. Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 2006;56:765–770 [CrossRef][PubMed]
    [Google Scholar]
  147. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Riazi S, Ventosa A et al. Halovivax limisalsi sp. nov., an extremely halophilic archaeon from hypersaline mud. Int J Syst Evol Microbiol 2014;64:3422–3426 [CrossRef][PubMed]
    [Google Scholar]
  148. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. Int J Syst Evol Microbiol 2007;57:1024–1027 [CrossRef][PubMed]
    [Google Scholar]
  149. Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BH. Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 2002;52:2271–2280 [CrossRef][PubMed]
    [Google Scholar]
  150. Xu XW, Wu M, Zhou PJ, Liu SJ. Halobiforma lacisalsi sp. nov., isolated from a salt lake in China. Int J Syst Evol Microbiol 2005;55:1949–1952 [CrossRef][PubMed]
    [Google Scholar]
  151. Gutiérrez MC, Castillo AM, Kamekura M, Xue Y, Ma Y et al. Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 2007;57:1402–1407 [CrossRef][PubMed]
    [Google Scholar]
  152. Hezayen FF, Gutiérrez MC, Steinbüchel A, Tindall BJ, Rehm BH. Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 2010;60:633–637 [CrossRef][PubMed]
    [Google Scholar]
  153. Zhang W-Y, Hu J, Pan J, Sun C, Wu M et al. Draft genome sequence of Halopiger salifodinae KCY07-B2T, an extremly halophilic archaeon isolated from a salt mine. Stand Genomic Sci 2015;10:1 [CrossRef]
    [Google Scholar]
  154. Ikram HI, Catherine R, Caroline M, Didier R, Hocine H et al. Non-contiguous finished genome sequence and description of Halopiger goleamassiliensis sp. nov. Stand Genomic Sci 2014;9:956–959 [CrossRef][PubMed]
    [Google Scholar]
  155. Hassani II, Robert C, Michelle C, Raoult D, Hacène H et al. Non-contiguous finished genome sequence and description of Halopiger djelfamassiliensis sp. nov. Stand Genomic Sci 2013;9:160–174 [CrossRef][PubMed]
    [Google Scholar]
  156. Corral P, Corcelli A, Ventosa A. Halostagnicola bangensis sp. nov., an alkaliphilic haloarchaeon from a soda lake. Int J Syst Evol Microbiol 2015;65:754–759 [CrossRef][PubMed]
    [Google Scholar]
  157. Nagaoka S, Minegishi H, Echigo A, Shimane Y, Kamekura M et al. Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 2011;61:1149–1152 [CrossRef][PubMed]
    [Google Scholar]
  158. Nagaoka S, Minegishi H, Echigo A, Usami R. Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 2010;60:2828–2831 [CrossRef][PubMed]
    [Google Scholar]
  159. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2006;56:1519–1524 [CrossRef][PubMed]
    [Google Scholar]
  160. Ventosa A, Gutiérrez MC, Kamekura M, Dyall-Smith ML. Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 1999;49:131–136 [CrossRef][PubMed]
    [Google Scholar]
  161. Zvyagintseva I, Tarasov A. Extreme halophilic bacteria from saline soils. Microbiology 1988;56:839–844
    [Google Scholar]
  162. Cui HL, Tohty D, Zhou PJ, Liu SJ, Sp Hlonga. Haloterrigena longa sp. nov. and Haloterrigena limicola sp. nov., extremely halophilic archaea isolated from a salt lake. Int J Syst Evol Microbiol 2006;56:1837–1840 [CrossRef][PubMed]
    [Google Scholar]
  163. Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A et al. Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2007;57:1499–1503 [CrossRef][PubMed]
    [Google Scholar]
  164. Gutiérrez M, Castillo A, Kamekura M, Ventosa A. Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 2008;58:2880–2884 [CrossRef][PubMed]
    [Google Scholar]
  165. Montalvo-Rodríguez R, López-Garriga J, Vreeland RH, Oren A, Ventosa A et al. Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 2000;50:1065–1071 [CrossRef][PubMed]
    [Google Scholar]
  166. Xu XW, Liu SJ, Tohty D, Oren A, Wu M et al. Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J Syst Evol Microbiol 2005;55:2539–2542 [CrossRef][PubMed]
    [Google Scholar]
  167. Cha I-T, Lee M-H, Kim B-Y, Cho Y-J, Kim D-W et al. Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29T isolated from salt-fermented food. Stand Genomic Sci 2015;10:1–7 [CrossRef]
    [Google Scholar]
  168. Itoh T, Yamaguchi T, Zhou P, Takashina T. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 2005;9:111–116 [CrossRef][PubMed]
    [Google Scholar]
  169. Corral P, Gutiérrez MC, Castillo AM, Domínguez M, Lopalco P et al. Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 2013;63:104–108 [CrossRef][PubMed]
    [Google Scholar]
  170. Kanal H, Kobayashi T, Aono R, Kudo T. Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 1995;45:762–766 [CrossRef][PubMed]
    [Google Scholar]
  171. Cui HL, Yang X, Mou YZ. Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 2011;15:625–631 [CrossRef][PubMed]
    [Google Scholar]
  172. Rozzell JD. Commercial scale biocatalysis: myths and realities. Bioorg Med Chem 1999;7:2253–2261 [CrossRef][PubMed]
    [Google Scholar]
  173. Chand Bhalla T, Nand Sharma N. 2007; Food and industrial microbiology. [Online]. http://nsdl.niscair.res.in/bitstream/123456789/129/1/Metabolites.pdf [Accessed August 2013]
  174. Enache M, Kamekura M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 2010;47:47–59
    [Google Scholar]
  175. Mesbah NM, Wiegel J. Life at extreme limits. Ann N Y Acad Sci 2008;1125:44–57 [CrossRef]
    [Google Scholar]
  176. van den Burg B. Extremophiles as a source for novel enzymes. Curr Opin Microbiol 2003;6:213–218 [CrossRef][PubMed]
    [Google Scholar]
  177. Herbert RA. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 1992;10:395–402 [CrossRef][PubMed]
    [Google Scholar]
  178. Averhoff B, Müller V. Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 2010;161:506–514 [CrossRef][PubMed]
    [Google Scholar]
  179. Eichler J. Biotechnological uses of archaeal extremozymes. Biotechnol Adv 2001;19:261–278 [CrossRef][PubMed]
    [Google Scholar]
  180. Litchfield CD. Potential for industrial products from the halophilic archaea. J Ind Microbiol Biotechnol 2011;38:1635–1647 [CrossRef][PubMed]
    [Google Scholar]
  181. Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016;18:1 [CrossRef][PubMed]
    [Google Scholar]
  182. de Souza PM. Application of microbial α-amylase in industry – a review. Braz J Microbiol 2010;41:850–861 [CrossRef][PubMed]
    [Google Scholar]
  183. Danson MJ, Hough DW. The structural basis of protein halophilicity. Comp Biochem Physiol a Physiol 1997;117:307–312 [CrossRef]
    [Google Scholar]
  184. Marhuenda-Egea FC, Bonete MJ, Maj B. Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 2002;13:385–389 [CrossRef][PubMed]
    [Google Scholar]
  185. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 2013;42:6290–6307 [CrossRef][PubMed]
    [Google Scholar]
  186. Puri M, Barrow CJ, Verma ML. Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 2013;31:215–216 [CrossRef][PubMed]
    [Google Scholar]
  187. Patel S, Bagai R, Madamwar D. Stabilization of a halophilic α-amylase by calcium alginate immobilization. Biocatal Biotransformation 1996;14:147–155 [CrossRef]
    [Google Scholar]
  188. Alsafadi D, Paradisi F. Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferax volcanii: how to maximize activity and optimize performance of halophilic enzymes. Mol Biotechnol 2014;56:240–247 [CrossRef][PubMed]
    [Google Scholar]
  189. Li X, Yu H-Y. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 2014;59:455–463 [CrossRef]
    [Google Scholar]
  190. Danson MJ, Hough DW. Structure, function and stability of enzymes from the archaea. Trends Microbiol 1998;6:307–314 [CrossRef][PubMed]
    [Google Scholar]
  191. Madern D, Ebel C, Zaccai G. Halophilic adaptation of enzymes. Extremophiles 2000;4:91–98 [CrossRef][PubMed]
    [Google Scholar]
  192. Rao JK, Argos P. Structural stability of halophilic proteins. Biochemistry 1981;20:6536–6543 [CrossRef][PubMed]
    [Google Scholar]
  193. Sinha R, Khare SK. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 2014;5:165 [CrossRef][PubMed]
    [Google Scholar]
  194. Singh OV. Extremophiles: Sustainable Resources and Biotechnological Implications New York: Wiley-Blackwell; 2012;[CrossRef]
    [Google Scholar]
  195. Lanyi JK. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 1974;38:272[PubMed]
    [Google Scholar]
  196. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K. Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 2003;327:347–357 [CrossRef][PubMed]
    [Google Scholar]
  197. Karan R, Capes MD, Dassarma S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 2012;8:4 [CrossRef][PubMed]
    [Google Scholar]
  198. Allers T. Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioeng Bugs 2010;1:290–292 [CrossRef]
    [Google Scholar]
  199. Connaris H, Chaudhuri JB, Danson MJ, Hough DW. Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli. Biotechnol Bioeng 1999;64:38–45 [CrossRef][PubMed]
    [Google Scholar]
  200. Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 2010;76:733–743 [CrossRef][PubMed]
    [Google Scholar]
  201. Siroosi M, Amoozegar MA, Khajeh K, Fazeli M, Rezaei MH. Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 2014;18:25–33 [CrossRef][PubMed]
    [Google Scholar]
  202. Manikandan M, Pašić L, Kannan V. Purification and biological characterization of a halophilic thermostable protease from Haloferax lucentensis VKMM 007. World J Microbiol Biotechnol 2009;25:2247–2256 [CrossRef]
    [Google Scholar]
  203. Najafi MF, Deobagkar D, Deobagkar D. Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechn 2005;8:197–203 [CrossRef]
    [Google Scholar]
  204. Vijayaraghavan P, Jebamalar TRJ, Vincent SGP. Biosynthesis optimization and purification of a solvent stable alkaline serine protease from Halobacterium sp. Ann Microbiol 2012;62:403–410 [CrossRef]
    [Google Scholar]
  205. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998;62:597–635[PubMed]
    [Google Scholar]
  206. Schumacher K, Heine E, Höcker H. Extremozymes for improving wool properties. J Biotechnol 2001;89:281–288 [CrossRef][PubMed]
    [Google Scholar]
  207. Shi W, Tang XF, Huang Y, Gan F, Tang B et al. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles 2006;10:599–606 [CrossRef][PubMed]
    [Google Scholar]
  208. Elbanna K, Ibrahim IM, Revol-Junelles AM. Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles 2015;19:763–774 [CrossRef][PubMed]
    [Google Scholar]
  209. Ryu K, Kim J, Dordick JS. Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb Technol 1994;16:266–275 [CrossRef][PubMed]
    [Google Scholar]
  210. Kim J, Dordick JS. Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 1997;55:471–479 [CrossRef][PubMed]
    [Google Scholar]
  211. de Castro RE, Ruiz DM, Giménez MI, Silveyra MX, Paggi RA et al. Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 2008;12:677–687 [CrossRef][PubMed]
    [Google Scholar]
  212. Stan-Lotter H, Doppler E, Jarosch M, Radax C, Gruber C et al. Isolation of a chymotrypsinogen B-like enzyme from the archaeon Natronomonas pharaonis and other halobacteria. Extremophiles 1999;3:153–161 [CrossRef][PubMed]
    [Google Scholar]
  213. D'Alessandro CP, de Castro RE, Giménez MI, Paggi RA. Effect of nutritional conditions on extracellular protease production by the haloalkaliphilic archaeon Natrialba magadii. Lett Appl Microbiol 2007;44:637–642 [CrossRef][PubMed]
    [Google Scholar]
  214. Vijayanand S, Hemapriya J, Selvin J, Kiran S. Production and optimization of haloalkaliphilic protease by an extremophile – Halobacterium sp. Js1, isolated from thalassohaline environment. Global J Biotechnol Biochem 2010;5:44–49
    [Google Scholar]
  215. Dammak DF, Smaoui SM, Ghanmi F, Boujelben I, Maalej S. Characterization of halo-alkaline and thermostable protease from Halorubrum ezzemoulense strain ETR14 isolated from Sfax solar saltern in Tunisia. J Basic Microbiol 2016;56:337–346 [CrossRef][PubMed]
    [Google Scholar]
  216. Vidyasagar M, Prakash SB, Sreeramulu K. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett Appl Microbiol 2006;43:385–391 [CrossRef][PubMed]
    [Google Scholar]
  217. Kamekura M, Seno Y, Dyall-Smith M. Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochim Biophys Acta 1996;1294:159–167 [CrossRef]
    [Google Scholar]
  218. Kamekura M, Seno Y, Holmes ML, Dyall-Smith ML. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol 1992;174:736–742 [CrossRef][PubMed]
    [Google Scholar]
  219. Horvathova V, Janecek S, Sturdik E. Amylolytic enzymes: their specificities, origins and properties. Biologia-Bratislava 2000;55:605–616
    [Google Scholar]
  220. Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 2001;56:326–338 [CrossRef][PubMed]
    [Google Scholar]
  221. Sunna A, Moracci M, Rossi M, Antranikian G. Glycosyl hydrolases from hyperthermophiles. Extremophiles 1997;1:2–13 [CrossRef][PubMed]
    [Google Scholar]
  222. Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R et al. Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 1992;174:3439–3444 [CrossRef][PubMed]
    [Google Scholar]
  223. Hutcheon GW, Vasisht N, Bolhuis A. Characterisation of a highly stable α-amylase from the halophilic archaeon haloarcula hispanica. Extremophiles 2005;9:487–495 [CrossRef][PubMed]
    [Google Scholar]
  224. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. Organic solvent tolerance of halophilic alpha-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 2005;9:85–89 [CrossRef][PubMed]
    [Google Scholar]
  225. Bajpai B, Chaudhary M, Saxena J. Production and characterization of α-amylase from an extremely halophilic archaeon, Haloferax sp. HA10. Food Technol Biotechnol 2015;53:11–17 [CrossRef][PubMed]
    [Google Scholar]
  226. Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T. Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 1994;176:5131–5134 [CrossRef][PubMed]
    [Google Scholar]
  227. Tanuja S, Srinivas ND, Gowthaman MK, Raghavarao KSMS. Aqueous two-phase extraction coupled with ultrafiltration for purification of amyloglucosidase. Bioprocess Eng 2000;23:63–68 [CrossRef]
    [Google Scholar]
  228. Chaga G, Porath J, Illéni T. Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed Chromatogr 1993;7:256–261 [CrossRef][PubMed]
    [Google Scholar]
  229. Niehaus F, Bertoldo C, Kähler M, Antranikian G. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 1999;51:711–729 [CrossRef][PubMed]
    [Google Scholar]
  230. Siroosi M, Amoozegar MA, Khajeh K, Fazeli M, Rezaei MH. Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 2013;1–9
    [Google Scholar]
  231. Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 2004;64:763–781 [CrossRef][PubMed]
    [Google Scholar]
  232. Verger R. ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol 1997;15:32–38 [CrossRef]
    [Google Scholar]
  233. Gomes J, Steiner W. The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 2004;42:223–235
    [Google Scholar]
  234. Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC. Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 2006;41:21–26 [CrossRef]
    [Google Scholar]
  235. Müller-Santos M, de Souza EM, Pedrosa FO, Mitchell DA, Longhi S et al. First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 2009;1791:719–729 [CrossRef][PubMed]
    [Google Scholar]
  236. Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J. Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 2009;36:901–909 [CrossRef][PubMed]
    [Google Scholar]
  237. Camacho RM, Mateos-Díaz JC, Diaz-Montaño DM, González-Reynoso O, Córdova J. Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1. Extremophiles 2010;14:99–106 [CrossRef][PubMed]
    [Google Scholar]
  238. Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M. Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 2009;36:105–110 [CrossRef][PubMed]
    [Google Scholar]
  239. Wainø M, Ingvorsen K. Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 2003;7:87–93 [CrossRef][PubMed]
    [Google Scholar]
  240. Wang C-Y, Chan H, Lin H-T, Shyu Y-T. Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. Ann of Biol 2010;156:187–197 [CrossRef]
    [Google Scholar]
  241. Biely P. Microbial xylanolytic systems. Trends Biotechnol 1985;3:286–290 [CrossRef]
    [Google Scholar]
  242. Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K. Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 2009;25:197–204 [CrossRef]
    [Google Scholar]
  243. Hung K-S, Liu S-M, Tzou W-S, Lin F-P, Pan C-L et al. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 2011;46:1257–1263 [CrossRef]
    [Google Scholar]
  244. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT. Xylanases and their applications in baking industry. Food Technol Biotechnol 2008;46:22–31
    [Google Scholar]
  245. Elms J, Fishwick D, Walker J, Rawbone R, Jeffrey P et al. Prevalence of sensitisation to cellulase and xylanase in bakery workers. Occup Environ Med 2003;60:802–804 [CrossRef][PubMed]
    [Google Scholar]
  246. Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 2009;84:667–676 [CrossRef][PubMed]
    [Google Scholar]
  247. Boon MA, van't Riet K, Janssen AE. Enzymatic synthesis of oligosaccharides: product removal during a kinetically controlled reaction. Biotechnol Bioeng 2000;70:411–420 [CrossRef][PubMed]
    [Google Scholar]
  248. Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R. β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 2002;58:313–321 [CrossRef][PubMed]
    [Google Scholar]
  249. Holmes ML, Scopes RK, Moritz RL, Simpson RJ, Englert C et al. Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochim Biophys Acta 1997;1337:276–286 [CrossRef][PubMed]
    [Google Scholar]
  250. Karan R, Capes MD, Dassarma P, Dassarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013;13:3 [CrossRef][PubMed]
    [Google Scholar]
  251. Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases – production, applications and challenges. J Sci Ind Res 2005;64:832
    [Google Scholar]
  252. Li X, Yu HY. Characterization of a halostable endoglucanase with organic solvent-tolerant property from Haloarcula sp. G10. Int J Biol Macromol 2013;62:101–106 [CrossRef][PubMed]
    [Google Scholar]
  253. Li X, Yu HY. Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes. J Ind Microbiol Biotechnol 2013;40:1357–1365 [CrossRef][PubMed]
    [Google Scholar]
  254. Ogan A, Danis O, Gozuacik A, Cakmar E, Birbir M. Production of cellulase by immobilized whole cells of Haloarcula. Prikl Biokhim Mikrobiol 2012;48:440–443 [CrossRef][PubMed]
    [Google Scholar]
  255. Nercessian D, di Meglio L, de Castro R, Paggi R. Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 2015;19:1133–1143 [CrossRef][PubMed]
    [Google Scholar]
  256. Bhattacharya D, Nagpure A, Gupta RK. Bacterial chitinases: properties and potential. Crit Rev Biotechnol 2007;27:21–28 [CrossRef][PubMed]
    [Google Scholar]
  257. Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K et al. Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 2006;12:201
    [Google Scholar]
  258. Moscoso F, Sieira M, Domínguez A, Deive FJ, Longo MA et al. Efficient biosynthesis of a chitinase from Halobacterium salinarum expressed in Escherichia coli. J Chem Technol Biotechnol 2014;89:1653–1659 [CrossRef]
    [Google Scholar]
  259. García-Fraga B, da Silva AF, López-Seijas J, Sieiro C. Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli. Appl Microbiol Biotechnol 2014;98:2133–2143 [CrossRef][PubMed]
    [Google Scholar]
  260. Hou J, Han J, Cai L, Zhou J, Y et al. Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl Microbiol Biotechnol 2014;98:1185–1194 [CrossRef][PubMed]
    [Google Scholar]
  261. Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 2015;6:942 [CrossRef][PubMed]
    [Google Scholar]
  262. Fu XT, Kim SM. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 2010;8:200–218 [CrossRef][PubMed]
    [Google Scholar]
  263. Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y et al. Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles 2013;17:931–939 [CrossRef][PubMed]
    [Google Scholar]
  264. Akira Obayashi U, Nobutsugu Hiraoka M, Keiko Kita K, Hiroshi Nakajima O. Inventors process for producing restriction enzyme. US Patent US 1988;4724209:
    [Google Scholar]
  265. Kakhki AM, Amoozegar MA, Khaledi EM. Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake. Int J Environ Sci Technol 2011;8:705–714 [CrossRef]
    [Google Scholar]
  266. Birbir M, Ogan A, Calli B, Mertoglu B. Enzyme characteristics of extremely halophilic archaeal community in tuzkoy salt mine, Turkey. World J Microbiol Biotechnol 2004;20:613–621 [CrossRef]
    [Google Scholar]
  267. Ferrer J, Pérez-Pomares F, Bonete MJ. NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 1996;141:59–63 [CrossRef][PubMed]
    [Google Scholar]
  268. Pire C, Esclapez J, Ferrer J, Bonete MJ. Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family. FEMS Microbiol Lett 2001;200:221–227 [CrossRef][PubMed]
    [Google Scholar]
  269. Johnsen U, Schönheit P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 2004;186:6198–6207 [CrossRef][PubMed]
    [Google Scholar]
  270. Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 1997;61:533–616[PubMed]
    [Google Scholar]
  271. Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ, Maj B. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 2001;204:381–385 [CrossRef][PubMed]
    [Google Scholar]
  272. Hochstein LI, Lang F. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. Arch Biochem Biophys 1991;288:380–385 [CrossRef][PubMed]
    [Google Scholar]
  273. Bickel-Sandkötter S, Ufer M. Properties of a dissimilatory nitrate reductase from the halophilic archaeon Haloferax volcanii. Zeitschrift Für Naturforschung C 1995;50:365–372
    [Google Scholar]
  274. Yoshimatsu K, Sakurai T, Fujiwara T. Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett 2000;470:216–220 [CrossRef][PubMed]
    [Google Scholar]
  275. Brown-Peterson NJ, Salin ML. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium. J Bacteriol 1995;177:378–384 [CrossRef][PubMed]
    [Google Scholar]
  276. Chaikaew S, Powtongsook S, Boonpayung S, Benjakul S, Visessanguan W. Enhanced production of histamine dehydrogenase by Natrinema gari BCC 24369 in a non-sterile condition. J Gen Appl Microbiol 2015;61:232–240 [CrossRef][PubMed]
    [Google Scholar]
  277. Tapingkae W, Parkin KL, Tanasupawat S, Kruenate J, Benjakul S et al. Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chem 2010;120:842–849 [CrossRef]
    [Google Scholar]
  278. Timpson LM, Liliensiek AK, Alsafadi D, Cassidy J, Sharkey MA et al. A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii. Appl Microbiol Biotechnol 2013;97:195–203 [CrossRef][PubMed]
    [Google Scholar]
  279. Alsafadi D, Paradisi F. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 2013;17:115–122 [CrossRef][PubMed]
    [Google Scholar]
  280. Timpson LM, Alsafadi D, Mac Donnchadha C, Liddell S, Sharkey MA et al. Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles 2012;16:57–66 [CrossRef][PubMed]
    [Google Scholar]
  281. Cao Y, Liao L, Xu XW, Oren A, Wang C et al. Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles 2008;12:471–476 [CrossRef][PubMed]
    [Google Scholar]
  282. Oztetik E, Cakir A. New food for an old mouth: new enzyme for an ancient archaea. Enzyme Microb Technol 2014;55:58–64 [CrossRef][PubMed]
    [Google Scholar]
  283. Ohshida T, Hayashi J, Satomura T, Kawakami R, Ohshima T et al. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase. Protein Expr Purif 2016;126:62–68 [CrossRef][PubMed]
    [Google Scholar]
  284. van Eijk J, Mutstaers J. Bread improving composition. US Patent application No. EP687414 1995
  285. Bautista V, Esclapez J, Pérez-Pomares F, Martínez-Espinosa RM, Camacho M et al. Cyclodextrin glycosyltransferase: a key enzyme in the assimilation of starch by the halophilic archaeon Haloferax mediterranei. Extremophiles 2012;16:147–159 [CrossRef][PubMed]
    [Google Scholar]
  286. Acikgoz E, Ozcan B. Phenol biodegradation by halophilic archaea. Int Biodeterior Biodegradation 2016;107:140–146 [CrossRef]
    [Google Scholar]
  287. Galinski EA, Tindall BJ. Biotechnological Prospects for Halophiles and Halotolerant Micro-Organisms Glasgow: Blackie & Sons; 1992; pp.76–114
    [Google Scholar]
  288. Poli A, di Donato P, Abbamondi GR, Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011;2011:1–13 [CrossRef][PubMed]
    [Google Scholar]
  289. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F. Accumulation of poly (β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 1986;51:214–216[PubMed]
    [Google Scholar]
  290. Rodriguez-Valera F. Biotechnological potential of halobacteria. Biochem Soc Symp 1992;58:135–147[PubMed]
    [Google Scholar]
  291. Stoeckenius W, Bogomolni RA. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 1982;51:587–616 [CrossRef][PubMed]
    [Google Scholar]
  292. Cai L, Zhao D, Hou J, Wu J, Cai S et al. Cellular and organellar membrane-associated proteins in haloarchaea: perspectives on the physiological significance and biotechnological applications. Sci China Life Sci 2012;55:404–414 [CrossRef][PubMed]
    [Google Scholar]
  293. Bott RR, Jensen RB, Kelemen BR, Donald E, Whited GM. Composition comprising various proteorhodopsins and/or bacteriorhodopsins and use thereof. US Patent Application No. 13/974,988 2013
  294. Wang AHJ, Hsu MF, Yang CS, Hy F. Bacteriorhodopsin fusion membrane protein expression system. US Patent Application No. 14/041,493 2015
  295. Li Y, Xiang H, Liu J, Zhou M, Tan H. Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 2003;7:401–407 [CrossRef][PubMed]
    [Google Scholar]
  296. Charlesworth JC, Burns BP. Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015;2015:1–7 [CrossRef][PubMed]
    [Google Scholar]
  297. Srivastava P, Braganca J, Ramanan SR, Kowshik M. Green synthesis of silver nanoparticles by haloarchaeon Halococcus salifodinae BK6. Advanced Materials Research 2014;938:236–241 [CrossRef]
    [Google Scholar]
  298. Pecher WT, Kim J-M, DasSarma P, Karan R, Sinnis P et al. Halobacterium expression system for production of full-length Plasmodium falciparum circumsporozoite protein. Biotechnology of Extremophiles Springer; 2016; pp.699–709[CrossRef]
    [Google Scholar]
  299. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol 2010;31:825–834 [CrossRef][PubMed]
    [Google Scholar]
  300. Ding JY, Lai MC. The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach. Environ Technol 2010;31:905–914 [CrossRef][PubMed]
    [Google Scholar]
  301. Zviagintseva IS, Beliaev SS, Borzenkov IA, Kostrikina NA, Milekhina EI et al. [Halophilic archaebacteria from the Kalamkass oilfield]. Mikrobiologiia 1995;64:83–87[PubMed]
    [Google Scholar]
  302. Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 2015;19:1109–1120 [CrossRef][PubMed]
    [Google Scholar]
  303. Feng J, Zhou P, Zhou Y-G, Liu S-J, Warren-Rhodes K et al. Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 2005;55:149–152 [CrossRef][PubMed]
    [Google Scholar]
  304. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Halorubrum ejinorense sp. nov., isolated from Lake Ejinor, Inner Mongolia, China. Int J Syst Evol Microbiol 2007;57:2538–2542 [CrossRef][PubMed]
    [Google Scholar]
  305. Cui H-L, Lin Z-Y, Dong Y, Zhou P-J, Liu S-J et al. Halorubrum litoreum nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007;57:2204–2206[CrossRef]
    [Google Scholar]
  306. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Halorubrum orientale sp. nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China. Int J Syst Evol Microbiol 2006;56:2559–2563 [CrossRef][PubMed]
    [Google Scholar]
  307. Pesenti PT, Sikaroodi M, Gillevet PM, Sánchez-Porro C, Ventosa A et al. Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol 2008;58:2710–2715 [CrossRef][PubMed]
    [Google Scholar]
  308. Cui HL, Tohty D, Zhou PJ, Liu SJ. Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 2006;56:1631–1634 [CrossRef][PubMed]
    [Google Scholar]
  309. Kharroub K, Quesada T, Ferrer R, Fuentes S, Aguilera M et al. Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from ezzemoul sabkha, Algeria. Int J Syst Evol Microbiol 2006;56:1583–1588 [CrossRef][PubMed]
    [Google Scholar]
  310. Fan H, Xue Y, Ma Y, Ventosa A, Grant WD. Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 2004;54:1213–1216 [CrossRef][PubMed]
    [Google Scholar]
  311. Zhang W-J, Cui H-L, Sp Hsalinum. nov., isolated from a marine solar saltern. Arch Microbiol 2014;196:395–400[CrossRef]
    [Google Scholar]
  312. Xu XW, Wu YH, Zhang HB, Wu M. Halorubrum arcis sp. nov., an extremely halophilic archaeon isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 2007;57:1069–1072 [CrossRef][PubMed]
    [Google Scholar]
  313. Yim KJ, Cha IT, Lee HW, Song HS, Kim KN et al. Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie van Leeuwenhoek 2014;105:603–612 [CrossRef][PubMed]
    [Google Scholar]
  314. Roh SW, Bae JW. Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J Microbiol 2009;47:162–166 [CrossRef][PubMed]
    [Google Scholar]
  315. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL. Halorubrum rubrum sp. nov., an extremely halophilic archaeon from a Chinese salt lake. Antonie van Leeuwenhoek 2013;104:885–891 [CrossRef][PubMed]
    [Google Scholar]
  316. Kondo Y, Minegishi H, Echigo A, Shimane Y, Kamekura M et al. Halorubrum gandharaense sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 2015;65:2345–2350 [CrossRef][PubMed]
    [Google Scholar]
  317. Corral P, de La Haba RR, Sánchez-Porro C, Amoozegar MA, Papke RT et al. Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 2015;65:1770–1778 [CrossRef][PubMed]
    [Google Scholar]
  318. Hu L, Pan H, Xue Y, Ventosa A, Cowan DA et al. Halorubrum luteum sp. nov., isolated from Lake Chagannor, inner Mongolia, China. Int J Syst Evol Microbiol 2008;58:1705–1708 [CrossRef][PubMed]
    [Google Scholar]
  319. Gutiérrez MC, Castillo AM, Corral P, Kamekura M, Ventosa A. Halorubrum aquaticum sp. nov., an archaeon isolated from hypersaline lakes. Int J Syst Evol Microbiol 2011;61:1144–1148 [CrossRef][PubMed]
    [Google Scholar]
  320. Feng J, Zhou PJ, Liu SJ. Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 2004;54:1789–1791 [CrossRef][PubMed]
    [Google Scholar]
  321. Gutiérrez MC, Castillo AM, Pagaling E, Heaphy S, Kamekura M et al. Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 2008;58:2031–2035 [CrossRef][PubMed]
    [Google Scholar]
  322. Lizama C, Monteoliva-Sánchez M, Suárez-García A, Roselló-Mora R, Aguilera M et al. Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama saltern, Chile. Int J Syst Evol Microbiol 2002;52:149–155 [CrossRef][PubMed]
    [Google Scholar]
  323. Mancinelli RL, Landheim R, Sánchez-Porro C, Dornmayr-Pfaffenhuemer M, Gruber C et al. Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 2009;59:1908–1913 [CrossRef][PubMed]
    [Google Scholar]
  324. Ventosa A, Gutiérrez MC, Kamekura M, Zvyagintseva IS, Oren A. Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov. Int J Syst Evol Microbiol 2004;54:389–392 [CrossRef][PubMed]
    [Google Scholar]
  325. Zvyagintseva I, Tarasov A. Extreme halophilic bacteria from saline soils. Mikrobiologiya 1987;56:839–844
    [Google Scholar]
  326. McGenity TJ, Grant WD. Halorubrum. In Bergey's Manual of Systematics of Archaea and Bacteria, 2nd ed. New York: Springer; 2001
    [Google Scholar]
  327. Han D, Cui HL. Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie van Leeuwenhoek 2015;107:217–223 [CrossRef][PubMed]
    [Google Scholar]
  328. Mcgenity TJ, Grant WD. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 1995;18:237–243 [CrossRef]
    [Google Scholar]
  329. Petter HFM. On Bacteria of Salted Fish Proceedings Academy of Science; Amsterdam: 1931
    [Google Scholar]
  330. Mwatha WE, Grant WD. Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Evol Microbiol 1993;43:401–404
    [Google Scholar]
  331. Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M. Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 1997;47:853–857 [CrossRef][PubMed]
    [Google Scholar]
  332. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE et al. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 1988;11:20–27 [CrossRef]
    [Google Scholar]
  333. Corral P, Ali Amoozegar M, de La Haba RR, Thane Papke R, Ventosa A et al. Halorubrum halodurans sp. nov., an extremely halophilic archaeon isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016;66:1770–1778 [CrossRef]
    [Google Scholar]
  334. Chen S, Liu HC, Zhao D, Yang J, Zhou J et al. Halorubrum yunnanense sp. nov., isolated from a subterranean salt mine. Int J Syst Evol Microbiol 2015;65:4526–4532 [CrossRef][PubMed]
    [Google Scholar]
  335. Yin S, Wang Z, Xu JQ, Xu WM, Yuan PP et al. Halorubrum rutilum sp. nov. isolated from a marine solar saltern. Arch Microbiol 2015;197:1159–1164 [CrossRef][PubMed]
    [Google Scholar]
  336. Trigui H, Masmoudi S, Brochier-Armanet C, Maalej S, Dukan S. Characterization of Halorubrum sfaxense sp. nov., a new halophilic archaeon isolated from the solar saltern of Sfax in Tunisia. Int J Microbiol 2011;2011:1–8 [CrossRef][PubMed]
    [Google Scholar]
  337. Sánchez-Nieves R, Facciotti MT, Saavedra-Collado S, Dávila-Santiago L, Rodríguez-Carrero R et al. Draft genome sequence of Halorubrum tropicale strain V5, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico. Genom Data 2016;7:284–286 [CrossRef][PubMed]
    [Google Scholar]
  338. Mehrshad M, Amoozegar MA, Makhdoumi A, Shahzadeh Fazeli SA, Farahani H et al. Halosiccatus urmianus gen. nov., sp. nov., a novel haloarchaeon from a salt lake. Int J Syst Evol Microbiol 2015; [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  339. Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B et al. Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake. Int J Syst Evol Microbiol 2015;65:2420–2425 [CrossRef][PubMed]
    [Google Scholar]
  340. Minegishi H, Echigo A, Kuwahara A, Shimane Y, Kamekura M et al. Halocalculus aciditolerans gen. nov., sp. nov., an acid-tolerant haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 2015;65:1640–1645 [CrossRef][PubMed]
    [Google Scholar]
  341. Liu Q, Ren M, Zhang LL. Natribaculum breve gen. nov., sp. nov. and Natribaculum longum sp. nov., halophilic archaea isolated from saline soil. Int J Syst Evol Microbiol 2015;65:604–608 [CrossRef][PubMed]
    [Google Scholar]
  342. Studdert CA, Herrera Seitz MK, Plasencia Gil MI, Sanchez JJ, de Castro RE. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol 2001;41:375–383 [CrossRef][PubMed]
    [Google Scholar]
  343. Vidyasagar M, Prakash S, Litchfield C, Sreeramulu K. Purification and characterization of a thermostable, haloalkaliphilic extracellular serine protease from the extreme halophilic archaeon Halogeometricum borinquense strain TSS101. Archaea 2006;2:51–57 [CrossRef][PubMed]
    [Google Scholar]
  344. Giménez MI, Studdert CA, Sánchez JJ, de Castro RE. Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 2000;4:181–188 [CrossRef][PubMed]
    [Google Scholar]
  345. Izotova LS, Strongin AY, Chekulaeva LN, Sterkin VE, Ostoslavskaya VI et al. Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 1983;155:826–830[PubMed]
    [Google Scholar]
  346. Elbanna K, Ibrahim IM, Revol-Junelles AM. Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles 2015;19:763–774 [CrossRef][PubMed]
    [Google Scholar]
  347. Pérez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC et al. Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 2003;7:299–306 [CrossRef][PubMed]
    [Google Scholar]
  348. Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA. Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 2013;17:677–687 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000463
Loading
/content/journal/micro/10.1099/mic.0.000463
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error