1887

Abstract

The important human pathogen Streptococcus pneumoniae is a naturally transformable species. When developing the competent state, it expresses proteins involved in DNA uptake, DNA processing and homologous recombination. In addition to the proteins required for the transformation process, competent pneumococci express proteins involved in a predatory DNA acquisition mechanism termed fratricide. This is a mechanism by which the competent pneumococci secrete a muralytic fratricin termed CbpD, which lyses susceptible sister cells or closely related streptococcal species. The released DNA can then be taken up by the competent pneumococci and integrated into their genomes. To avoid committing suicide, competent pneumococci produce an integral membrane protein, ComM, which protects them against CbpD by an unknown mechanism. In the present study, we show that overexpression of ComM results in growth inhibition and development of severe morphological abnormalities, such as cell elongation, misplacement of the septum and inhibition of septal cross-wall synthesis. The toxic effect of ComM is tolerated during competence because it is not allowed to accumulate in the competent cells. We provide evidence that an intra-membrane protease called RseP is involved in the process of controlling the ComM levels, since △rseP mutants produce higher amounts of ComM compared to wild-type cells. The data presented here indicate that ComM mediates immunity against CbpD by a mechanism that is detrimental to the pneumococcus if exaggerated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000402
2017-02-06
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/1/9.html?itemId=/content/journal/micro/10.1099/mic.0.000402&mimeType=html&fmt=ahah

References

  1. Hakenbeck R. Target-mediated resistance to beta-lactam antibiotics. Biochem Pharmacol 1995;50:1121–1127[PubMed][CrossRef]
    [Google Scholar]
  2. Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R. Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae, S. mitis and S. oralis. Int J Med Microbiol 2007;297:503–512 [CrossRef][PubMed]
    [Google Scholar]
  3. Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae: the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol 1993;9:635–643[PubMed][CrossRef]
    [Google Scholar]
  4. Sibold C, Henrichsen J, König A, Martin C, Chalkley L et al. Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol 1994;12:1013–1023[PubMed][CrossRef]
    [Google Scholar]
  5. Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 2009;33:643–656 [CrossRef][PubMed]
    [Google Scholar]
  6. Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 2000;182:6192–6202[PubMed][CrossRef]
    [Google Scholar]
  7. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 2004;51:1051–1070[PubMed][CrossRef]
    [Google Scholar]
  8. Rimini R, Jansson B, Feger G, Roberts TC, de Francesco M et al. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol Microbiol 2000;36:1279–1292[PubMed][CrossRef]
    [Google Scholar]
  9. Håvarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 1995;16:229–240[PubMed][CrossRef]
    [Google Scholar]
  10. Håvarstein LS, Coomaraswamy G, Morrison DA. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci USA 1995;92:11140–11144[PubMed][CrossRef]
    [Google Scholar]
  11. Hui FM, Morrison DA. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 1991;173:372–381[PubMed][CrossRef]
    [Google Scholar]
  12. Martin B, Soulet AL, Mirouze N, Prudhomme M, Mortier-Barrière I et al. ComE/ComE~P interplay dictates activation or extinction status of pneumococcal X-state (competence). Mol Microbiol 2013;87:394–411 [CrossRef][PubMed]
    [Google Scholar]
  13. Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 1999;181:5004–5016[PubMed]
    [Google Scholar]
  14. Johnsborg O, Eldholm V, Bjørnstad ML, Håvarstein LS. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol 2008;69:245–253 [CrossRef][PubMed]
    [Google Scholar]
  15. Steinmoen H, Teigen A, Håvarstein LS. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol 2003;185:7176–7183[PubMed][CrossRef]
    [Google Scholar]
  16. Håvarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP. New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 2006;59:1297–1307 [CrossRef][PubMed]
    [Google Scholar]
  17. Berg KH, Biørnstad TJ, Johnsborg O, Håvarstein LS. Properties and biological role of streptococcal fratricins. Appl Environ Microbiol 2012;78:3515–3522 [CrossRef][PubMed]
    [Google Scholar]
  18. Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Håvarstein LS. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 2009;155:2223–2234 [CrossRef][PubMed]
    [Google Scholar]
  19. Eldholm V, Johnsborg O, Straume D, Ohnstad HS, Berg KH et al. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol Microbiol 2010;76:905–917 [CrossRef][PubMed]
    [Google Scholar]
  20. Kausmally L, Johnsborg O, Lunde M, Knutsen E, Håvarstein LS. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol 2005;187:4338–4345 [CrossRef][PubMed]
    [Google Scholar]
  21. Steinmoen H, Knutsen E, Håvarstein LS. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci USA 2002;99:7681–7686 [CrossRef][PubMed]
    [Google Scholar]
  22. Straume D, Stamsås GA, Håvarstein LS. Natural transformation and genome evolution in Streptococcus pneumoniae. Infect Genet Evol 2015;33:371–380 [CrossRef][PubMed]
    [Google Scholar]
  23. Alloing G, Martin B, Granadel C, Claverys JP. Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol Microbiol 1998;29:75–83[PubMed][CrossRef]
    [Google Scholar]
  24. Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K et al. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 2004;51:1071–1086[PubMed][CrossRef]
    [Google Scholar]
  25. Lacks S, Hotchkiss RD. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta 1960;39:508–518 [CrossRef][PubMed]
    [Google Scholar]
  26. Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988;16:7351–7367[PubMed][CrossRef]
    [Google Scholar]
  27. Berg KH, Stamsås GA, Straume D, Håvarstein LS. Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J Bacteriol 2013;195:4342–4354 [CrossRef][PubMed]
    [Google Scholar]
  28. Sung CK, Li H, Claverys JP, Morrison DA. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 2001;67:5190–5196 [CrossRef][PubMed]
    [Google Scholar]
  29. Berg KH, Biørnstad TJ, Straume D, Håvarstein LS. Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. J Bacteriol 2011;193:5207–5215 [CrossRef][PubMed]
    [Google Scholar]
  30. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C et al. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 2010;192:1444–1454 [CrossRef][PubMed]
    [Google Scholar]
  31. Fjellbirkeland A, Kleivdal H, Joergensen C, Thestrup H, Jensen HB. Outer membrane proteins of Methylococcus capsulatus (Bath). Arch Microbiol 1997;168:128–135[PubMed][CrossRef]
    [Google Scholar]
  32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685[PubMed][CrossRef]
    [Google Scholar]
  33. Miller JH. Experiments in molecular genetics Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  34. Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 2002;16:2156–2168 [CrossRef][PubMed]
    [Google Scholar]
  35. Kanehara K, Ito K, Akiyama Y. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 2002;16:2147–2155 [CrossRef][PubMed]
    [Google Scholar]
  36. Li X, Wang B, Feng L, Kang H, Qi Y et al. Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage. Proc Natl Acad Sci USA 2009;106:14837–14842 [CrossRef][PubMed]
    [Google Scholar]
  37. Schöbel S, Zellmeier S, Schumann W, Wiegert T. The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 2004;52:1091–1105 [CrossRef][PubMed]
    [Google Scholar]
  38. Kjos M, Snipen L, Salehian Z, Nes IF, Diep DB. The Abi proteins and their involvement in bacteriocin self-immunity. J Bacteriol 2010;192:2068–2076 [CrossRef][PubMed]
    [Google Scholar]
  39. Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013;504:301–305 [CrossRef][PubMed]
    [Google Scholar]
  40. Pryor EE, Horanyi PS, Clark KM, Fedoriw N, Connelly SM et al. Structure of the integral membrane protein CAAX protease Ste24p. Science 2013;339:1600–1604 [CrossRef][PubMed]
    [Google Scholar]
  41. Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 1997;275:1796–1800[PubMed][CrossRef]
    [Google Scholar]
  42. Tam A, Nouvet FJ, Fujimura-Kamada K, Slunt H, Sisodia SS et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol 1998;142:635–649[PubMed][CrossRef]
    [Google Scholar]
  43. Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA 1998;95:11175–11180[PubMed][CrossRef]
    [Google Scholar]
  44. Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 1990;62:81–88[PubMed][CrossRef]
    [Google Scholar]
  45. Seabra MC, Brown MS, Slaughter CA, Südhof TC, Goldstein JL. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell 1992;70:1049–1057 [CrossRef][PubMed]
    [Google Scholar]
  46. Plummer LJ, Hildebrandt ER, Porter SB, Rogers VA, Mccracken J et al. Mutational analysis of the Ras converting enzyme reveals a requirement for glutamate and histidine residues. J Biol Chem 2006;281:4596–4605 [CrossRef][PubMed]
    [Google Scholar]
  47. Dolence JM, Steward LE, Dolence EK, Wong DH, Poulter CD. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p. Biochemistry 2000;39:4096–4104 [CrossRef][PubMed]
    [Google Scholar]
  48. Johnsborg O, Håvarstein LS. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 2009;33:627–642[PubMed][CrossRef]
    [Google Scholar]
  49. Bordes P, Lavatine L, Phok K, Barriot R, Boulanger A et al. Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of {sigma}E-dependent activity. J Bacteriol 2011;193:246–264 [CrossRef][PubMed]
    [Google Scholar]
  50. Muller C, Bang IS, Velayudhan J, Karlinsey J, Papenfort K et al. Acid stress activation of the sigma(E) stress response in Salmonella enterica serovar Typhimurium. Mol Microbiol 2009;71:1228–1238 [CrossRef][PubMed]
    [Google Scholar]
  51. Wood LF, Ohman DE. Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol Microbiol 2009;72:183–201 [CrossRef][PubMed]
    [Google Scholar]
  52. Bramkamp M, Weston L, Daniel RA, Errington J. Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. Mol Microbiol 2006;62:580–591 [CrossRef][PubMed]
    [Google Scholar]
  53. Tsang MJ, Bernhardt TG. A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol Microbiol 2015;95:925–944 [CrossRef][PubMed]
    [Google Scholar]
  54. Akiyama Y, Kanehara K, Ito K. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 2004;23:4434–4442 [CrossRef][PubMed]
    [Google Scholar]
  55. Ellermeier CD, Losick R. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 2006;20:1911–1922 [CrossRef][PubMed]
    [Google Scholar]
  56. Lux T, Nuhn M, Hakenbeck R, Reichmann P. Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae. J Bacteriol 2007;189:7741–7751 [CrossRef][PubMed]
    [Google Scholar]
  57. Frankel MB, Wojcik BM, Dedent AC, Missiakas DM, Schneewind O. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 2010;78:238–252 [CrossRef][PubMed]
    [Google Scholar]
  58. Straume D, Stamsås GA, Berg KH, Salehian Z, Håvarstein LS. Identification of pneumococcal proteins that are functionally linked to penicillin-binding protein 2b (PBP2b). Mol Microbiol 2017;103:99–116 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000402
Loading
/content/journal/micro/10.1099/mic.0.000402
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error