1887

Abstract

Bacillus subtilis is an intensively studied Gram-positive bacterium that has become one of the models for biofilm development. B. subtilis 168 is a well-known domesticated strain that has been suggested to be deficient in robust biofilm formation. Moreover, the diversity of available B. subtilis laboratory strains and their derivatives have made it difficult to compare independent studies related to biofilm formation. Here, we analysed numerous 168 stocks from multiple laboratories for their ability to develop biofilms in different set-ups and media. We report a wide variation among the biofilm-forming capabilities of diverse stocks of B. subtilis 168, both in architecturally complex colonies and liquid–air interface pellicles, as well as during plant root colonization. Some 168 variants are indeed unable to develop robust biofilm structures, while others do so as efficiently as the non-domesticated NCIB 3610 strain. In all cases studied, the addition of glucose to the medium dramatically improved biofilm development of the laboratory strains. Furthermore, the expression of biofilm matrix component operons, epsA-O and tapA-sipW-tasA, was monitored during colony biofilm formation. We found a lack of direct correlation between the expression of these genes and the complexity of wrinkles in colony biofilms. However, the presence of a single mutation in the exopolysaccharide-related gene epsC correlates with the ability of the stocks tested to form architecturally complex colonies and pellicles, and to colonize plant roots.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000371
2016-11-23
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1922.html?itemId=/content/journal/micro/10.1099/mic.0.000371&mimeType=html&fmt=ahah

References

  1. Aguilar C., Vlamakis H., Guzman A., Losick R., Kolter R..( 2010;). KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. . MBio 1: e00035-10. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arabolaza A. L., Nakamura A., Pedrido M. E., Martelotto L., Orsaria L., Grau R. R..( 2003;). Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on SpoOA activation during development in Bacillus subtilis. . Mol Microbiol 47: 1251–1263.[CrossRef]
    [Google Scholar]
  3. Asally M., Kittisopikul M., Rué P., Du Y., Hu Z., Çağatay T., Robinson A. B., Lu H., Garcia-Ojalvo J., Süel G. M..( 2012;). Localized cell death focuses mechanical forces during 3D patterning in a biofilm. . Proc Natl Acad Sci U S A 109: 18891–18896.[CrossRef]
    [Google Scholar]
  4. Bais H. P., Fall R., Vivanco J. M..( 2004;). Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. . Plant Physiol 134: 307–319.[CrossRef]
    [Google Scholar]
  5. Bajaj I., Veiga T., van Dissel D., Pronk J. T., Daran J. M..( 2014;). Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis. . BMC Microbiol 14,: 114. [CrossRef]
    [Google Scholar]
  6. Barbe V., Cruveiller S., Kunst F., Lenoble P., Meurice G., Sekowska A., Vallenet D., Wang T., Moszer I. et al.( 2009;). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. . Microbiology 155: 1758–1775. [CrossRef] [PubMed]
    [Google Scholar]
  7. Beauregard P. B., Chai Y., Vlamakis H., Losick R., Kolter R..( 2013;). Bacillus subtilis biofilm induction by plant polysaccharides. . Proc Natl Acad Sci U S A 110: E1621E1630. [CrossRef] [PubMed]
    [Google Scholar]
  8. Benoit I., van den Esker M. H., Patyshakuliyeva A., Mattern D. J., Blei F., Zhou M., Dijksterhuis J., Brakhage A. A., Kuipers O. P. et al.( 2015;). Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. . Environ Microbiol 17: 2099–2113. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S. R., Moser C., Kühl M., Jensen P. Ø., Høiby N..( 2013;). The in vivo biofilm. . Trends Microbiol 21: 466–474. [CrossRef] [PubMed]
    [Google Scholar]
  10. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R..( 2001;). Fruiting body formation by Bacillus subtilis. . Proc Natl Acad Sci U S A 98: 11621–11626.[CrossRef]
    [Google Scholar]
  11. Branda S. S., González-pastor J. E., Ehrlich S. D., Losick R., Gonza E., Dervyn E..( 2004;). Genes involved in formation of structured multicellular communities by Bacillus subtilis. . J Bacteriol 186: 3970–3979.[CrossRef]
    [Google Scholar]
  12. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R..( 2006;). A major protein component of the Bacillus subtilis biofilm matrix. . Mol Microbiol 59: 1229–1238.[CrossRef]
    [Google Scholar]
  13. Buescher J. M., Liebermeister W., Jules M., Uhr M., Muntel J., Botella E., Hessling B., Kleijn R. J., Le Chat L. et al.( 2012;). Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. . Science 335: 1099–1103. [CrossRef] [PubMed]
    [Google Scholar]
  14. Burkholder P., Giles N. H..( 1947;). Induced biochemical mutations in Bacillus subtilis. . Am J Bot 34: 345–348.[CrossRef]
    [Google Scholar]
  15. Cairns L. S., Hobley L., Stanley-Wall N. R..( 2014;). Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. . Mol Microbiol 93: 587–598.[CrossRef]
    [Google Scholar]
  16. Castiblanco L. F., Sundin G. W..( 2016;). New insights on molecular regulation of biofilm formation in plant-associated bacteria. . J Integr Plant Biol 58: 362–372.[CrossRef]
    [Google Scholar]
  17. Chai Y., Beauregard P. B., Vlamakis H., Losick R., Kolter R..( 2012;). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. . MBio 3: e00184-12. [CrossRef] [PubMed]
    [Google Scholar]
  18. Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., Guo J. H..( 2013;). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. . Environ Microbiol 15: 848–864.[CrossRef]
    [Google Scholar]
  19. Chu F., Kearns D. B., Branda S. S., Kolter R., Losick R..( 2006;). Targets of the master regulator of biofilm formation in Bacillus subtilis. . Mol Microbiol 59: 1216–1228.[CrossRef]
    [Google Scholar]
  20. Earl A. M., Losick R., Kolter R..( 2008;). Ecology and genomics of Bacillus subtilis. . Trends Microbiol 16: 269–275.[CrossRef]
    [Google Scholar]
  21. Flemming H.-C., Wingender J..( 2010;). The biofilm matrix. . Nat Rev Microbiol 8: 623–633.
    [Google Scholar]
  22. Gonzalez-Pastor J. E., Hobbs E. C., Losick R..( 2003;). Cannibalism by sporulating bacteria. . Science 301: 510–513.[CrossRef]
    [Google Scholar]
  23. Grau R. R., de Oña P., Kunert M., Leñini C., Gallegos-Monterrosa R., Mhatre E., Vileta D., Donato V., Hölscher T. et al.( 2015;). A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. . MBio 6: e00581-15. [CrossRef] [PubMed]
    [Google Scholar]
  24. Harwood C. R., Cutting S. M..( 1990;). Molecular Biological Methods for Bacillus. Chichester, England:: John Wiley & Sons Ltd;.
    [Google Scholar]
  25. Jones S. E., Paynich M. L., Kearns D. B., Knight K. L..( 2014;). Protection from intestinal inflammation by bacterial exopolysaccharides. . J Immunol 192: 4813–4820.[CrossRef]
    [Google Scholar]
  26. Kearns D. B., Losick R..( 2003;). Swarming motility in undomesticated Bacillus subtilis. . Mol Microbiol 49: 581–590.[CrossRef]
    [Google Scholar]
  27. Kearns D. B., Chu F., Branda S. S., Kolter R., Losick R..( 2005;). A master regulator for biofilm formation by Bacillus subtilis. . Mol Microbiol 55: 739–749.[CrossRef]
    [Google Scholar]
  28. Kobayashi K..( 2007;). Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. . J Bacteriol 189: 4920–4931.[CrossRef]
    [Google Scholar]
  29. Kohlstedt M., Sappa P. K., Meyer H., Maaß S., Zaprasis A., Hoffmann T., Becker J., Steil L., Hecker M. et al.( 2014;). Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. . Environ Microbiol 16: 1898–1917. [CrossRef] [PubMed]
    [Google Scholar]
  30. Konkol M. A., Blair K. M., Kearns D. B..( 2013;). Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. . J Bacteriol 195: 4085–4093.[CrossRef]
    [Google Scholar]
  31. Kovács A. T., Kuipers O. P..( 2011;). Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. . J Bacteriol 193: 998–1002. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kunst F., Rapoport G..( 1995;). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. . J Bacteriol 177: 2403–2407.[CrossRef]
    [Google Scholar]
  33. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al.( 1997;). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. . Nature 390: 249–256. [CrossRef] [PubMed]
    [Google Scholar]
  34. McLoon A. L., Guttenplan S. B., Kearns D. B., Kolter R., Losick R..( 2011;). Tracing the domestication of a biofilm-forming bacterium. . J Bacteriol 193: 2027–2034.[CrossRef]
    [Google Scholar]
  35. Meyer H., Weidmann H., Mäder U., Hecker M., Völker U., Lalk M..( 2014;). A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. . Mol Biosyst 10: 1812–1823.[CrossRef]
    [Google Scholar]
  36. Mhatre E., Monterrosa R. G., Kovács A. T..( 2014;). From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. . J Basic Microbiol 54: 616–632. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mhatre E., Troszok A., Gallegos-Monterrosa R., Lindstädt S., Hölscher T., Kuipers O. P., Kovács Á. T..( 2016;). The impact of manganese on biofilm development of Bacillus subtilis. . Microbiology 162: 1468–1478. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mielich-Süss B., Lopez D..( 2015;). Molecular mechanisms involved in Bacillus subtilis biofilm formation. . Environ Microbiol 17: 555–565.[CrossRef]
    [Google Scholar]
  39. Murray E. J., Strauch M. A., Stanley-Wall N. R..( 2009;). SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. . J Bacteriol 191: 6822–6832.[CrossRef]
    [Google Scholar]
  40. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M. et al.( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. . Science 335: 1103–1106. [CrossRef] [PubMed]
    [Google Scholar]
  41. Oslizlo A., Stefanic P., Vatovec S., Beigot Glaser S., Rupnik M., Mandic-Mulec I..( 2015;). Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. . Microb Biotechnol 8: 527–540.[CrossRef]
    [Google Scholar]
  42. Öztürk S., Çalık P., Özdamar T. H..( 2016;). Fed-batch biomolecule production by Bacillus subtilis: a state of the art review. . Trends Biotechnol 34: 329–345.[CrossRef]
    [Google Scholar]
  43. Patrick J. E., Kearns D. B..( 2009;). Laboratory strains of Bacillus subtilis do not exhibit swarming motility. . J Bacteriol 191: 7129–7133.[CrossRef]
    [Google Scholar]
  44. Pollak S., Omer Bendori S., Eldar A..( 2015;). A complex path for domestication of B. subtilis sociality. . Curr Genet 61: 493–496. [CrossRef] [PubMed]
    [Google Scholar]
  45. Powers M. J., Sanabria-Valentín E., Bowers A. A., Shank E. A..( 2015;). Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. . J Bacteriol 197: 2129–2138.[CrossRef]
    [Google Scholar]
  46. Romero D..( 2013;). Bacterial determinants of the social behavior of Bacillus subtilis. . Res Microbiol 164: 788–798.[CrossRef]
    [Google Scholar]
  47. Romero D., Vlamakis H., Losick R., Kolter R..( 2011;). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. . Mol Microbiol 80: 1155–1168.[CrossRef]
    [Google Scholar]
  48. Roux D., Cywes-Bentley C., Zhang Y. F., Pons S., Konkol M., Kearns D. B., Little D. J., Howell P. L., Skurnik D., Pier G. B..( 2015;). Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. . J Biol Chem 290: 19261–19272.[CrossRef]
    [Google Scholar]
  49. Seccareccia I., Kovács Á. T., Gallegos-Monterrosa R., Nett M..( 2016;). Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. . Microbiol Res 192: 231–238. [CrossRef] [PubMed]
    [Google Scholar]
  50. Shank E. A., Kolter R..( 2011;). Extracellular signaling and multicellularity in Bacillus subtilis. . Curr Opin Microbiol 14: 741–747.[CrossRef]
    [Google Scholar]
  51. Shank E. A., Klepac-Ceraj V., Collado-Torres L., Powers G. E., Losick R., Kolter R..( 2011;). Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. . Proc Natl Acad Sci U S A 108: E1236E1243. [CrossRef] [PubMed]
    [Google Scholar]
  52. Stanley C. E., Stöckli M., van Swaay D., Sabotič J., Kallio P. T., Künzler M., DeMello A. J., Aebi M..( 2014;). Probing bacterial–fungal interactions at the single cell level. . Integr Biol 6: 935–945.[CrossRef]
    [Google Scholar]
  53. Valderrama W. B., Cutter C. N..( 2013;). An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. . Crit Rev Food Sci Nutr 53: 801–817.[CrossRef]
    [Google Scholar]
  54. van Gestel J., Weissing F. J., Kuipers O. P., Kovács A. T..( 2014;). Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. . ISME J 8: 2069–2079. [CrossRef] [PubMed]
    [Google Scholar]
  55. Vargas-Bautista C., Rahlwes K., Straight P..( 2014;). Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. . J Bacteriol 196: 717–728.[CrossRef]
    [Google Scholar]
  56. Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R..( 2013;). Sticking together: building a biofilm the Bacillus subtilis way. . Nat Rev Microbiol 11: 157–168.[CrossRef]
    [Google Scholar]
  57. Wilking J. N., Zaburdaev V., De Volder M., Losick R., Brenner M. P., Weitz D. A..( 2013;). Liquid transport facilitated by channels in Bacillus subtilis biofilms. . Proc Natl Acad Sci U S A 110: 848–852. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zeigler D. R., Prágai Z., Rodriguez S., Chevreux B., Muffler A., Albert T., Bai R., Wyss M., Perkins J. B..( 2008;). The origins of 168, W23, and other Bacillus subtilis legacy strains. . J Bacteriol 190: 6983–6995.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000371
Loading
/content/journal/micro/10.1099/mic.0.000371
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error