1887

Abstract

Base-pairing small RNAs (sRNAs) regulate gene expression commonly by direct interaction with cognate mRNAs. Nevertheless, recent studies have expanded this knowledge with the discovery of the RNA ‘sponges’ which are able to interact and repress the functions of classical base-pairing sRNAs. In this work, we present evidence indicating that the sponge RNA SroC from Salmonella enterica serovar Typhimurium base pairs with the MgrR sRNA, thereby antagonizing its regulatory effects on both gene expression and resistance to the antimicrobial peptide polymyxin B (PMB). By a predictive algorithm, we determined putative SroC–MgrR base-pairing regions flanking the interaction area between MgrR and its target mRNA, eptB, encoding a LPS-modifying enzyme. With a two-plasmid system and compensatory mutations, we confirmed that SroC directly interacts and down-regulates the levels of MgrR, thus relieving the MgrR-mediated repression of eptB mRNA. Since it was previously shown that an Escherichia coli strain carrying an mgrR deletion is more resistant to PMB, we assessed the significance of SroC in the susceptibility of S. Typhimurium to PMB. Whereas the sroC deletion increased the sensitivity to PMB, as compared to the wild-type, the resistance phenotypes between the ΔmgrR and ΔsroCΔmgrR strains were comparable, evidencing that mgrR mutation is epistatic to the sroC mutation. Together, these results indicate that both SroC and MgrR sRNAs compose a coherent feed-forward loop controlling the eptB expression and hence the LPS modification in S. Typhimurium.

Keyword(s): MgrR , polymyxin B , RNA sponge , sRNAs and SroC
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000365
2016-11-23
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/11/1996.html?itemId=/content/journal/micro/10.1099/mic.0.000365&mimeType=html&fmt=ahah

References

  1. Bossi L., Figueroa-Bossi N..( 2007;). A small RNA downregulates LamB maltoporin in Salmonella. . Mol Microbiol 65: 799–810. [CrossRef] [PubMed]
    [Google Scholar]
  2. Calderón I. L., Morales E. H., Collao B., Calderón P. F., Chahuán C. A., Acuña L. G., Gil F., Saavedra C. P..( 2014;). Role of Salmonella Typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response. . Res Microbiol 165: 30–40. [CrossRef] [PubMed]
    [Google Scholar]
  3. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97: 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  4. Delcour A. H..( 2009;). Outer membrane permeability and antibiotic resistance. . Biochim Biophys Acta 1794: 808–816. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ebel-Tsipis J., Fox M. S., Botstein D..( 1972;). Generalized transduction by bacteriophage P22 in Salmonella Typhimurium. II. Mechanism of integration of transducing DNA. . J Mol Biol 71: 449–469.[PubMed] [CrossRef]
    [Google Scholar]
  6. Figueroa N., Wills N., Bossi L..( 1991;). Common sequence determinants of the response of a prokaryotic promoter to DNA bending and supercoiling. . EMBO J 4: 941–949.
    [Google Scholar]
  7. Figueroa-Bossi N., Valentini M., Malleret L., Fiorini F., Bossi L..( 2009;). Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. . Genes Dev 23: 2004–2015. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fuentes D. N., Calderón P. F., Acuña L. G., Rodas P. I., Paredes-Sabja D., Fuentes J. A., Gil F., Calderón I. L..( 2015;). Motility modulation by the small non-coding RNA SroC in Salmonella Typhimurium. . FEMS Microbiol Lett 362: fnv135. [CrossRef] [PubMed]
    [Google Scholar]
  9. García Véscovi E., Soncini F. C., Groisman E. A..( 1996;). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. . Cell 84: 165–174. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jørgensen M. G., Nielsen J. S., Boysen A., Franch T., Møller-Jensen J., Valentin-Hansen P..( 2012;). Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. . Mol Microbiol 84: 36–50. [CrossRef] [PubMed]
    [Google Scholar]
  11. Klein G., Raina S..( 2015;). Regulated control of the assembly and diversity of LPS by noncoding sRNAs. . BioMed Res Int 2015: 1–16. [CrossRef]
    [Google Scholar]
  12. Kröger C., Colgan A., Srikumar S., Händler K., Sivasankaran S. K., Hammarlöf D. L., Canals R., Grissom J. E., Conway T. et al.( 2013;). An infection-relevant transcriptomic compendium for Salmonella enterica serovar Typhimurium. . Cell Host Microbe 14: 683–695. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lalaouna D., Carrier M. C., Semsey S., Brouard J. S., Wang J., Wade J. T., Massé E..( 2015;). A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. . Mol Cell 58: 393–405. [CrossRef] [PubMed]
    [Google Scholar]
  14. Massé E., Escorcia F. E., Gottesman S..( 2003;). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. . Genes Dev 17: 2374–2383. [CrossRef] [PubMed]
    [Google Scholar]
  15. Michaux C., Verneuil N., Hartke A., Giard J. C..( 2014;). Physiological roles of small RNA molecules. . Microbiology 160: 1007–1019. [CrossRef] [PubMed]
    [Google Scholar]
  16. Miyakoshi M., Chao Y., Vogel J..( 2015;). Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. . EMBO J 34: 1478–1492. [CrossRef] [PubMed]
    [Google Scholar]
  17. Moon K., Gottesman S..( 2009;). A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. . Mol Microbiol 74: 1314–1330. [CrossRef] [PubMed]
    [Google Scholar]
  18. Moon K., Gottesman S..( 2011;). Competition among Hfq-binding small RNAs in Escherichia coli. . Mol Microbiol 82: 1545–1562. [CrossRef] [PubMed]
    [Google Scholar]
  19. Moon K., Six D. A., Lee H. J., Raetz C. R., Gottesman S..( 2013;). Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. . Mol Microbiol 89: 52–64. [CrossRef] [PubMed]
    [Google Scholar]
  20. Morita T., Maki K., Aiba H..( 2006;). RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. . Genes Dev 19: 2176–2186. [CrossRef] [PubMed]
    [Google Scholar]
  21. Murata T., Tseng W., Guina T., Miller S., Nikaido H..( 2007;). PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium. . J Bacteriol 189: 7213–7222. [CrossRef] [PubMed]
    [Google Scholar]
  22. Olaitan A. O., Morand S., Rolain J. M..( 2014;). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. . Front Microbiol 5: 643. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ortega A. D., Gonzalo-Asensio J., García-del Portillo F..( 2012;). Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. . RNA Biol 4: 469–488.[CrossRef]
    [Google Scholar]
  24. Overgaard M., Kallipolitis B., Valentin-Hansen P..( 2009;). Modulating the bacterial surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide modification. . Mol Microbiol 74: 1289–1294. [CrossRef] [PubMed]
    [Google Scholar]
  25. Papenfort K., Pfeiffer V., Mika F., Lucchini S., Hinton J. C., Vogel J..( 2006;). SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global OMP mRNA decay. . Mol Microbiol 62: 1674–1688. [CrossRef] [PubMed]
    [Google Scholar]
  26. Papenfort K., Said N., Welsink T., Lucchini S., Hinton J. C., Vogel J..( 2009;). Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. . Mol Microbiol 74: 139–158. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rau M. H., Bojanovič K., Nielsen A. T., Long K. S..( 2015;). Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli. . BMC Genomics 16: 1051. [CrossRef] [PubMed]
    [Google Scholar]
  28. Saramago M., Bárria C., Dos Santos R. F., Silva I. J., Pobre V., Domingues S., Andrade J. M., Viegas S. C., Arraiano C. M..( 2014;). The role of RNases in the regulation of small RNAs. . Curr Opin Microbiol 18: 105–115. [CrossRef] [PubMed]
    [Google Scholar]
  29. Sittka A., Lucchini S., Papenfort K., Sharma C. M., Rolle K., Binnewies T. T., Hinton J. C., Vogel J..( 2008;). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. . PLoS Genet 4: e1000163. [CrossRef] [PubMed]
    [Google Scholar]
  30. Storz G., Vogel J., Wassarman K. M..( 2011;). Regulation by small RNAs in bacteria: expanding frontiers. . Mol Cell 43: 880–891. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vogel J., Bartels V., Tang T. H., Churakov G., Slagter-Jäger J. G., Hüttenhofer A., Wagner E. G..( 2003;). RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. . Nucleic Acids Res 31: 6435–6443. [CrossRef] [PubMed]
    [Google Scholar]
  32. Vogel J., Papenfort K..( 2006;). Small non-coding RNAs and the bacterial outer membrane. . Curr Opin Microbiol 6: 605–611. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vogel J., Luisi B. F..( 2011;). Hfq and its constellation of RNA. . Nat Rev Microbiol 9: 578–589. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wright P. R., Georg J., Mann M., Sorescu D. A., Richter A. S., Lott S., Kleinkauf R., Hess W. R., Backofen R..( 2014;). CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. . Nucleic Acids Res 42: W119–W123. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang L., Dhillon P., Yan H., Farmer S., Hancock R. E..( 2000;). Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. . Antimicrob Agents Chemother 44: 3317–3321. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000365
Loading
/content/journal/micro/10.1099/mic.0.000365
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error