1887

Abstract

is a major fungal pathogen of fruit crops, which causes severe yield losses in strawberry production. A potential key factor in plant–pathogen interactions is fungal sesquiterpenoids which have mycotoxic and phytotoxic activities. The first committed step in sesquiterpenoid biosynthesis is performed by sesquiterpene synthases (TPS). Only a few TPSs have been functionally characterized from filamentous fungi and none from the genus . Despite being an important fungal pathogen to agriculture, it is poorly understood at the molecular and chemical levels. The terpenoid biochemistry in strain SA 0-1 was studied and one TPS (TPS) was successfully cloned and characterized in yeast. TPS catalyses the biosynthesis of multiple sesquiterpenoids. The two major products are β-caryophyllene and an unidentified sesquiterpenoid along with α-humulene as one of the minor sesquiterpenoid products. These products were also secreted by the fungus in strawberry fruit medium along with several other sesquiterpenoids indicating other TPSs are active during growth. β-Caryophyllene and α-humulene are known cytotoxic products important for ecological interactions and are produced by SA 0-1. Interestingly, a gene expression analysis using quantitative real-time PCR revealed a significant increase in expression of TPS during strawberry fruit infection, thus indicating that it could be involved in fruit infection. This is, we believe, the first characterization of TPS in spp. and terpenoid profiles of , which could facilitate studies on the role of terpenoids in the ecology of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000361
2016-10-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1773.html?itemId=/content/journal/micro/10.1099/mic.0.000361&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Ernst L., Stumpf B.. 1990; Biotransformation of caryophyllene by Diplodia gossypina. Phytochemistry29:115–120 [CrossRef]
    [Google Scholar]
  2. Agger S., Lopez-Gallego F., Schmidt-Dannert C.. 2009; Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol72:1181–1195 [CrossRef][PubMed]
    [Google Scholar]
  3. Andersen T. B., Cozzi F., Simonsen H.. 2015; Optimization of biochemical screening methods for volatile and unstable sesquiterpenoids using HS-SPME-GC-MS. Chromatography2:277–292 [CrossRef]
    [Google Scholar]
  4. Asadollahi M. A., Maury J., Schalk M., Clark A., Nielsen J.. 2010; Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng106:86–96 [CrossRef][PubMed]
    [Google Scholar]
  5. Baroncelli R.. 2012; Colletotrichum acutatum sensu lato: from diversity study to genome analysis PhD thesis University of Warwick;
    [Google Scholar]
  6. Brock N. L., Huss K., Tudzynski B., Dickschat J. S.. 2013; Genetic dissection of sesquiterpene biosynthesis by Fusarium fujikuroi. ChemBioChem14:311–315 [CrossRef][PubMed]
    [Google Scholar]
  7. Brown D. W., McCormick S. P., Alexander N. J., Proctor R. H., Desjardins A. E.. 2001; A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol32:121–133 [CrossRef][PubMed]
    [Google Scholar]
  8. Brown S. H., Yarden O., Gollop N., Chen S., Zveibil A., Belausov E., Freeman S.. 2008; Differential protein expression in Colletotrichum acutatum: changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Mol Plant Pathol9:171–190 [CrossRef][PubMed]
    [Google Scholar]
  9. Cane D. E.. 1990; Enzymic formation of sesquiterpenes. Chem Rev90:1089–1103 [CrossRef]
    [Google Scholar]
  10. Cane D. E., Kang I.. 2000; Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Arch Biochem Biophys376:354–364 [CrossRef][PubMed]
    [Google Scholar]
  11. Cardoza R. E., Malmierca M. G., Hermosa M. R., Alexander N. J., McCormick S. P., Proctor R. H., Tijerino A. M., Rumbero A., Monte E., Gutiérrez S.. 2011; Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol77:4867–4877 [CrossRef][PubMed]
    [Google Scholar]
  12. Cheng A. X., Lou Y. G., Mao Y. B., Lu S., Wang L. J., Chen X. Y.. 2007; Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol49:179–186 [CrossRef]
    [Google Scholar]
  13. Dahham S. S., Tabana Y. M., Iqbal M. A., Ahamed M. B., Ezzat M. O., Majid A. S., Majid A. M.. 2015; The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules20:11808–11829 [CrossRef][PubMed]
    [Google Scholar]
  14. Drew D. P., Rasmussen S. K., Avato P., Simonsen H. T.. 2012; A comparison of headspace solid-phase microextraction and classic hydrodistillation for the identification of volatile constituents from Thapsia spp. provides insights into guaianolide biosynthesis in Apiaceae. Phytochem Anal23:44–51 [CrossRef][PubMed]
    [Google Scholar]
  15. Drew D. P., Dueholm B., Weitzel C., Zhang Y., Sensen C. W., Simonsen H. T.. 2013; Transcriptome analysis of Thapsia laciniata Rouy provides insights into terpenoid biosynthesis and diversity in Apiaceae. Int J Mol Sci14:9080–9098 [CrossRef][PubMed]
    [Google Scholar]
  16. Drew D. P., Andersen T. B., Sweetman C., Møller B. L., Ford C., Simonsen H. T.. 2015; Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene. J Exp Bot67:799–808 [CrossRef][PubMed]
    [Google Scholar]
  17. Edgar R. C.. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  18. Fantaye C. A., Köpke D., Gershenzon J., Degenhardt J.. 2015; Restoring (E)-β-caryophyllene production in a non-producing maize line compromises its resistance against the fungus Colletotrichum graminicola. J Chem Ecol41:213–223 [CrossRef][PubMed]
    [Google Scholar]
  19. Felicetti B., Cane D. E.. 2004; Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J Am Chem Soc126:7212–7221 [CrossRef][PubMed]
    [Google Scholar]
  20. Gan P., Ikeda K., Irieda H., Narusaka M., O'Connell R. J., Narusaka Y., Takano Y., Kubo Y., Shirasu K.. 2013; Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol197:1236–1249 [CrossRef][PubMed]
    [Google Scholar]
  21. Gao Y., Honzatko R. B., Peters R. J.. 2012; Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep29:1153–1175 [CrossRef][PubMed]
    [Google Scholar]
  22. Gietz R. D., Schiestl R. H.. 2007a; High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc2:31–34[CrossRef]
    [Google Scholar]
  23. Gietz R. D., Schiestl R. H.. 2007b; Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc2:35–37 [CrossRef]
    [Google Scholar]
  24. Guo H., Xiong J.. 2006; A specific and versatile genome walking technique. Gene381:18–23 [CrossRef][PubMed]
    [Google Scholar]
  25. Hohn T. M., Desjardins A. E.. 1992; Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact5:249–256 [CrossRef][PubMed]
    [Google Scholar]
  26. Ikram N. K., Zhan X., Pan X. W., King B. C., Simonsen H. T.. 2015; Stable heterologous expression of biologically active terpenoids in green plant cells. Front Plant Sci6:129 [CrossRef][PubMed]
    [Google Scholar]
  27. Jeleń H. H.. 2002; Volatile sesquiterpene hydrocarbons characteristic for Penicillium roqueforti strains producing PR toxin. J Agric Food Chem50:6569–6574[PubMed][CrossRef]
    [Google Scholar]
  28. Jeleń H., Wasowicz E.. 1998; Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev Int14:391–426 [CrossRef]
    [Google Scholar]
  29. Kramer R., Abraham W.-R.. 2011; Volatile sesquiterpenes from fungi: what are they good for?. Phytochem Rev11:15–37 [CrossRef]
    [Google Scholar]
  30. Köllner T. G., Held M., Lenk C., Hiltpold I., Turlings T. C. J., Gershenzon J., Degenhardt J.. 2008; A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell20:482–494 [CrossRef][PubMed]
    [Google Scholar]
  31. Legault J., Pichette A.. 2007; Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol59:1643–1647 [CrossRef][PubMed]
    [Google Scholar]
  32. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  33. López-Gallego F., Wawrzyn G. T., Schmidt-Dannert C.. 2010; Selectivity of fungal sesquiterpene synthases: role of the active site's H-1α loop in catalysis. Appl Environ Microbiol76:7723–7733 [CrossRef][PubMed]
    [Google Scholar]
  34. Minerdi D., Bossi S., Gullino M. L., Garibaldi A.. 2009; Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol11:844–854 [CrossRef][PubMed]
    [Google Scholar]
  35. Miyazawa M., Kimura M., Yabe Y., Tsukamoto D., Sakamoto M., Horibe I., Okuno Y.. 2008; Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata. J Oleo Sci57:585–590 [CrossRef][PubMed]
    [Google Scholar]
  36. Muroi H., Kubo I.. 1993; Combination effects of antibacterial compounds in green tea flavor against Streptococcus mutans. J Agric Food Chem41:1102–1105 [CrossRef]
    [Google Scholar]
  37. Nguyen T. D., MacNevin G., Ro D. K.. 2012; De novo synthesis of high-value plant sesquiterpenoids in yeast. Methods Enzymol517:261–278 [CrossRef][PubMed]
    [Google Scholar]
  38. O'Connell R. J., Thon M. R., Hacquard S., Amyotte S. G., Kleemann J., Torres M. F., Damm U., Buiate E. A., Epstein L. et al. 2012; Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet44:1060–1065 [CrossRef][PubMed]
    [Google Scholar]
  39. O'Maille P. E., Malone A., Dellas N., Andes Hess B., Smentek L., Sheehan I., Greenhagen B. T., Chappell J., Manning G. et al. 2008; Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol4:617–623 [CrossRef][PubMed]
    [Google Scholar]
  40. Peres N. A., Timmer L. W., Adaskaveg J. E., Correll J. C.. 2005; Lifestyles of Colletotrichum acutatum. Plant Dis89:784–796 [CrossRef]
    [Google Scholar]
  41. Pfaffl M. W., Horgan G. W., Dempfle L.. 2002; Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res30:9e36 [CrossRef][PubMed]
    [Google Scholar]
  42. Pickel B., Drew D. P., Manczak T., Weitzel C., Simonsen H. T., Ro D. K.. 2012; Identification and characterization of a kunzeaol synthase from Thapsia garganica: implications for the biosynthesis of the pharmaceutical thapsigargin. Biochem J448:261–271 [CrossRef][PubMed]
    [Google Scholar]
  43. Pinedo C., Wang C.-M., Pradier J.-M., Dalmais B., Choquer M., Le Pêcheur P., Morgant G., Collado I. G., Cane D. E., Viaud M.. 2008; Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. Chem Bio3:791–801
    [Google Scholar]
  44. Proctor R. H., Hohn T. M.. 1993; Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J Biol Chem268:4543–4548[PubMed]
    [Google Scholar]
  45. Proctor R. H., Hohn T. M., McCormick S. P.. 1995; Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact8:593–601 [CrossRef][PubMed]
    [Google Scholar]
  46. Rynkiewicz M. J., Cane D. E., Christianson D. W.. 2001; Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A98:13543–13548 [CrossRef][PubMed]
    [Google Scholar]
  47. Siewers V., Viaud M., Jimenez-Teja D., Collado I. G., Gronover C. S., Pradier J. M., Tudzynski B., Tudzynski P.. 2005; Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact18:602–612 [CrossRef][PubMed]
    [Google Scholar]
  48. Simonsen H. T., Weitzel C., Christensen S. B.. 2013; Guaianolide sesquiterpenoids – their pharmacology and biosynthesis. In Handbook of Natural Products – Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes pp.3069–3098 Edited by Ramawat K. G., Merillon J. M.. Berlin: Springer-Verlag;
    [Google Scholar]
  49. Stokłosa A., Matraszek R., Isman M. B., Upadhyaya M. K.. 2012; Phytotoxic activity of clove oil, its constituents, and its modification by light intensity in broccoli and common lambsquarters (Chenopodium album). Weed Sci60:607–611 [CrossRef]
    [Google Scholar]
  50. Sundelin T., Schiller M., Lübeck M., Jensen D. F., Paaske K., Petersen B. D.. 2005; First report of anthracnose fruit rot caused by Colletotrichum acutatum on strawberry in Denmark. Plant Dis89:432 [CrossRef]
    [Google Scholar]
  51. Sundelin T., Jensen D. F., LüBeck M.. 2011; Identification of expressed genes during infection of Chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. J Euk Microbiol58:310–314[CrossRef]
    [Google Scholar]
  52. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  53. Trapp S. C., Hohn T. M., McCormick S., Jarvis B. B.. 1998; Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol Gen Genet257:421–432 [CrossRef][PubMed]
    [Google Scholar]
  54. Wang R.-L., Staehelin C., Peng S.-L., Wang W.-T., Xie X.-M., Lu H.-N.. 2010; Responses of Mikania micrantha, an invasive weed to elevated CO2: induction of β-caryophyllene synthase, changes in emission capability and allelopathic potential of β-caryophyllene. J Chem Ecol36:1076–1082 [CrossRef][PubMed]
    [Google Scholar]
  55. Weitzel C., Simonsen H. T.. 2015; Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochem Rev14:7–24 [CrossRef]
    [Google Scholar]
  56. Yu F., Miller D. J., Allemann R. K.. 2007; Probing the reaction mechanism of aristolochene synthase with 12,13-difluorofarnesyl diphosphate. Chem Commun28:4155–4157 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000361
Loading
/content/journal/micro/10.1099/mic.0.000361
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error