1887

Abstract

The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen , chosen as model micro-organism. A library of transposon mutants of PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major HO-scavenging enzyme catalase A (KatA). The knockout of gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As PAO1 catalase KatA copes with HO stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000351
2016-09-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1554.html?itemId=/content/journal/micro/10.1099/mic.0.000351&mimeType=html&fmt=ahah

References

  1. Astwood K., Lee B., Manley-Harris M.. 1998; Oligosaccharides in New Zeland honeydew honey. J Agric Food Chem46:4958–4962 [CrossRef]
    [Google Scholar]
  2. Blair S. E., Cokcetin N. N., Harry E. J., Carter D. A.. 2009; The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur J Clin Microbiol Infect Dis28:1199–1208 [CrossRef][PubMed]
    [Google Scholar]
  3. Blatny J. M., Brautaset T., Winther-Larsen H. C., Haugan K., Valla S.. 1997; Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol63:370–379[PubMed]
    [Google Scholar]
  4. Bobis O., Marghitas L., Rindt I. K., Niculae M., Dezmirean D.. 2008; Honeydew honey: correlations between chemical composition, antioxidant capacity and antibacterial effect. Zootehnie Biotehnologii41:271–277
    [Google Scholar]
  5. Bogdanov S.. 1997; Nature and origin of the antibacterial substances in honey. LWT - Food Sci Technol30:748–753 [CrossRef]
    [Google Scholar]
  6. Bogdanov S., Jurendic T., Sieber R., Gallmann P.. 2008; Honey for nutrition and health: a review. J Am Coll Nutr27:677–689 [CrossRef][PubMed]
    [Google Scholar]
  7. Brown S. M., Howell M. L., Vasil M. L., Anderson A. J., Hassett D. J.. 1995; Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol177:6536–6544[PubMed]
    [Google Scholar]
  8. Brudzynski K., Lannigan R.. 2012; Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Front Microbiol3:1–8 [CrossRef]
    [Google Scholar]
  9. Brudzynski K., Miotto D.. 2011; Honey melanoidins: analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem127:1023–1030 [CrossRef][PubMed]
    [Google Scholar]
  10. Brudzynski K., Sjaarda C.. 2015; Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLoS One10:e0120238 [CrossRef][PubMed]
    [Google Scholar]
  11. Bucekova M., Valachova I., Kohutova L., Prochazka E., Klaudiny J., Majtan J.. 2014; Honeybee glucose oxidase – its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Naturwissenschaften101:661–670 [CrossRef][PubMed]
    [Google Scholar]
  12. Carter D. A., Blair S. E., Cokcetin N. N., Bouzo D., Brooks P., Schothauer R., Harry E. J.. 2016; Therapeutic manuka honey: no longer so alternative. Front Microbiol7:569
    [Google Scholar]
  13. Choi K. H., Kumar A., Schweizer H. P.. 2006; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  14. Choi Y. S., Shin D. H., Chung I. Y., Kim S. H., Heo Y. J., Cho Y. H.. 2007; Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J Microbiol Biotechnol17:1344–1352[PubMed]
    [Google Scholar]
  15. Codex Alimentarius Commission (FAO/WHO) 2001; Revised codex standard for honey (CODEX STAN 12-1981, Rev.1 (1987), Rev.2 (2001)) Codex Alimentarius
  16. Fidaleo M., Zuorro A., Lavecchia R.. 2011; Antimicrobial activity of some Italian honeys against pathogenic bacteria. Chem Eng Transaction24:1015–1020
    [Google Scholar]
  17. Gellatly S. L., Hancock R. E.. 2013; Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis67:159–173 [CrossRef][PubMed]
    [Google Scholar]
  18. Hassett D. J., Alsabbagh E., Parvatiyar K., Howell M. L., Wilmott R. W., Ochsner U. A.. 2000; A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol182:4557–4563 [CrossRef][PubMed]
    [Google Scholar]
  19. Hayashi K., Fukushima A., Hayashi-Nishino M., Nishino K.. 2014; Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa. Front Microbiol5:180 [CrossRef]
    [Google Scholar]
  20. Herrero M., de Lorenzo V., Timmis K. N.. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567[PubMed]
    [Google Scholar]
  21. Huang L., St Denis T. G., Xuan Y., Huang Y. Y., Tanaka M., Zadlo A., Sarna T., Hamblin M. R.. 2012; Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: role of ambient oxygen and azide radicals. Free Radic Biol Med53:2062–2071 [CrossRef][PubMed]
    [Google Scholar]
  22. Ishikawa S., Suzuki K., Fukuda E., Arihara K., Yamamoto Y., Mukai T., Itoh M.. 2010; Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett584:770–774 [CrossRef][PubMed]
    [Google Scholar]
  23. Jenkins R., Burton N., Cooper R.. 2014; Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother69:603–615 [CrossRef][PubMed]
    [Google Scholar]
  24. Kacaniova M., Vukovic N., Bobkova A., Fikselova M., Rovna K., Hascik P., Cubon J., Hleba L., Bobko M.. 2011; Antimicrobial and antiradical activity of Slovakian honeydew honey samples. J Microbiol Biotech Food Sci3:354–368
    [Google Scholar]
  25. Kulasekara H. D., Ventre I., Kulasekara B. R., Lazdunski A., Filloux A., Lory S.. 2005; A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol55:368–380 [CrossRef][PubMed]
    [Google Scholar]
  26. Kwakman P. H., te Velde A. A., de Boer L., Speijer D., Vandenbroucke-Grauls C. M., Zaat S. A.. 2010; How honey kills bacteria. FASEB J24:2576–2582 [CrossRef][PubMed]
    [Google Scholar]
  27. Lambert P. A.. 2002; Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med41:22–26
    [Google Scholar]
  28. Lee J. S., Heo Y. J., Lee J. K., Cho Y. H.. 2005; KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect Immun73:4399–4403 [CrossRef][PubMed]
    [Google Scholar]
  29. Majtan J., Majtanova L., Bohova J., Majtan V.. 2011; Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients. Phytother Res25:584–587 [CrossRef][PubMed]
    [Google Scholar]
  30. Mavric E., Wittmann S., Barth G., Henle T.. 2008; Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res52:483–489 [CrossRef][PubMed]
    [Google Scholar]
  31. O'Toole G. A., Kolter R.. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  32. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J.. 2000; Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol182:4533–4544 [CrossRef][PubMed]
    [Google Scholar]
  33. Packer J. M., Irish J., Herbert B. R., Hill C., Padula M., Blair S. E., Carter D. A., Harry E. J.. 2012; Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int J Antimicrob Agents40:43–50 [CrossRef][PubMed]
    [Google Scholar]
  34. Roberts A. E., Brown H. L., Jenkins R. E.. 2015; On the antibacterial effects of Manuka honey: mechanistic insights. Res Rep Biol6:215–224
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Shin D. H., Choi Y. S., Cho Y. H.. 2008; Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J Bacteriol190:2663–2670 [CrossRef][PubMed]
    [Google Scholar]
  37. Sojka M., Valachova I., Bucekova M., Majtan J.. 2016; Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J Med Microbiol65:337–344 [CrossRef]
    [Google Scholar]
  38. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. et al. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  39. Tavares A., Dias S. R., Carvalho C. M., Faustino M. A., Tomé J. P., Neves M. G., Tomé A. C., Cavaleiro J. A., Cunha Â. et al. 2011; Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiol Sci10:1659–1669 [CrossRef][PubMed]
    [Google Scholar]
  40. Uthurry C. A., Hevia D., Gomez-Cordoves C.. 2011; Role of honey polyphenols in health. JAAS3:141–159 [CrossRef]
    [Google Scholar]
  41. Vatansever F., de Melo W. C., Avci P., Vecchio D., Sadasivam M., Gupta A., Chandran R., Karimi M., Parizotto N. A. et al. 2013; Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev37:955–989 [CrossRef][PubMed]
    [Google Scholar]
  42. White J. W., Subers M. H., Schepartz A. I.. 1963; The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta73:57–70 [CrossRef][PubMed]
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000351
Loading
/content/journal/micro/10.1099/mic.0.000351
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error