1887

Abstract

Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds’ impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000338
2016-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1563.html?itemId=/content/journal/micro/10.1099/mic.0.000338&mimeType=html&fmt=ahah

References

  1. Deeb R. A. , Alvarez-Cohen L. . ( 1999;). Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous . . Biotechnol Bioeng 62: 526–536. [CrossRef] [PubMed]
    [Google Scholar]
  2. Deeb R. A. , Alvarez-Cohen L. . ( 2000;). Aerobic biotransformation of gasoline aromatics in multi component mixtures. . Bioremed J 4: 171–179. [CrossRef]
    [Google Scholar]
  3. Deeb R. A. , Hu H.-Y. , Hanson J. R. , Scow K. M. , Alvarez-Cohen L. . ( 2001;). Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. . Environ Sci Technol 35: 312–317. [CrossRef] [PubMed]
    [Google Scholar]
  4. Deeb R. A. , Chu K.-H. , Shih T. , Linder S. , Suffet I. , Kavanaugh M. C. , Alvarez-Cohen L. . ( 2003;). MTBE and other oxygenates: environmental sources, analysis, occurrence, and treatment. . Environ Eng Sci 20: 433–447. [CrossRef]
    [Google Scholar]
  5. House A. J. , Hyman M. R. . ( 2010;). Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. . Biodegradation 21: 525–541. [CrossRef] [PubMed]
    [Google Scholar]
  6. Hristova K. , Gebreyesus B. , Mackay D. , Scow K. M. . ( 2003;). Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. . Appl Environ Microbiol 69: 2616–2623. [CrossRef] [PubMed]
    [Google Scholar]
  7. Hristova K. R. , Schmidt R. , Chakicherla A. Y. , Legler T. C. , Wu J. , Chain P. S. , Scow K. M. , Kane S. R. . ( 2007;). Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol. . Appl Environ Microbiol 73: 7347–7357. [CrossRef] [PubMed]
    [Google Scholar]
  8. Joshi G. , Schmidt R. , Scow K. M. , Denison M. S. , Hristova K. R. . ( 2015;). Gene mdpC plays a regulatory role in the methyl tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1. . FEMS Microbiol Lett 362: fnv029. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kane S. R. , Chakicherla A. Y. , Chain P. S. , Schmidt R. , Shin M. W. , Legler T. C. , Scow K. M. , Larimer F. W. , Lucas S. M. et al. ( 2007;). Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. . J Bacteriol 189: 1931–1945. [CrossRef] [PubMed]
    [Google Scholar]
  10. Koenigsberg S. , Sandefur C. , Mahaffey W. , Deshusses M. , Fortin N. . ( 1999;). Peroxygen mediated bioremediation of MTBE. . In In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds , pp. 13–18. Edited by Alleman B. C. , Leeson. Columbus A. . OH:: Battelle Press;.
    [Google Scholar]
  11. Koressaar T. , Remm M. . ( 2007;). Enhancements and modifications of primer design program Primer3. . Bioinformatics 23: 1289–1291. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lee E.-H. , Cho K.-S. . ( 2009;). Effect of substrate interaction on the degradation of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. . J Hazard Mater 167: 669–674. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lin C.-W. , Cheng Y.-W. , Tsai S.-L. . ( 2007;). Multi-substrate biodegradation kinetics of MTBE and BTEX mixtures by Pseudomonas aeruginosa . . Process Biochem 42: 1211–1217. [CrossRef]
    [Google Scholar]
  14. Mackay D. M. , de Sieyes N. R. , Einarson M. D. , Feris K. P. , Pappas A. A. , Wood I. A. , Jacobson L. , Justice L. G. , Noske M. N. et al. ( 2006;). Impact of ethanol on the natural attenuation of benzene, toluene, and o-xylene in a normally sulfate-reducing aquifer. . Environ Sci Technol 40: 6123–6130. [CrossRef] [PubMed]
    [Google Scholar]
  15. McDade J. M. , Connor J. A. , Paquette S. M. , Small J. M. . ( 2015;). Exceptionally long MTBE plumes of the past have greatly diminished. . Groundwater 53: 515–524. [CrossRef]
    [Google Scholar]
  16. McHugh T. E. , Rauch S. R. , Paquette S. M. , Connor J. A. , Daus A. D. . ( 2015;). Life cycle of methyl-tert-butyl ether in California public water supply wells. . Environ Sci Technol Lett 2: 7–11. [CrossRef]
    [Google Scholar]
  17. Nakatsu C. H. , Hristova K. , Hanada S. , Meng X. Y. , Hanson J. R. , Scow K. M. , Kamagata Y. . ( 2006;). Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl-tert-butyl ether-degrading methylotroph of the betaproteobacteria. . Int J Syst Evol Microbiol 56: 983–989. [CrossRef] [PubMed]
    [Google Scholar]
  18. North K. P. , Mackay D. M. , Kayne J. S. , Petersen D. , Rasa E. , Rastegarzadeh L. , Holland R. B. , Scow K. M. . ( 2012;). In situ biotreatment of TBA with recirculation/oxygenation. . Ground Water Monit Remediat 32: 52–62. [CrossRef] [PubMed]
    [Google Scholar]
  19. Pruden A. , Suidan M. T. , Venosa A. D. , Wilson G. J. . ( 2001;). Biodegradation of methyl-butyl ether under various substrate conditions. . Environ Sci Technol 35: 4235–4241. [CrossRef] [PubMed]
    [Google Scholar]
  20. Pruden A. , Sedran M. , Suidan M. , Venosa A. . ( 2003;). Biodegradation of MTBE and BTEX in an aerobic fluidized bed reactor. . Water Sci Technol 47: 123–128.[PubMed]
    [Google Scholar]
  21. Pruden A. , Suidan M. . ( 2004;). Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl-tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1. . Biodegradation 15: 213–227. [CrossRef] [PubMed]
    [Google Scholar]
  22. Raynal M. , Pruden A. . ( 2008;). Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. . Biodegradation 19: 269–282. [CrossRef] [PubMed]
    [Google Scholar]
  23. Schäfer F. , Breuer U. , Benndorf D. , von Bergen M. , Harms H. , Müller R. H. . ( 2007;). Growth of Aquincola tertiaricarbonis L108 on tert-butyl alcohol leads to the induction of a phthalate dioxygenase-related protein and its associated oxidoreductase subunit. . Eng Life Sci 7: 512–519. [CrossRef]
    [Google Scholar]
  24. Schmidt R. , Battaglia V. , Scow K. , Kane S. , Hristova K. R. . ( 2008;). Involvement of a novel enzyme MdpA, in methyl-tert-butyl ether degradation in Methylibium petroleiphilum PM1. . Appl Environ Microbiol 74: 6631–6638. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sedran M. A. , Pruden A. , Wilson G. J. , Suidan M. T. , Venosa A. D. . ( 2002;). Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium. . J Environ Eng 128: 830–835. [CrossRef]
    [Google Scholar]
  26. Smith A. E. , Hristova K. , Wood I. , Mackay D. M. , Lory E. , Lorenzana D. , Scow K. M. . ( 2005;). Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). . Environ Health Perspect 113: 317–322. [CrossRef] [PubMed]
    [Google Scholar]
  27. Untergasser A. , Cutcutache I. , Koressaar T. , Ye J. , Faircloth B. C. , Remm M. , Rozen S. G. . ( 2012;). Primer3—new capabilities and interfaces. . Nucleic Acids Res 40: e115. [CrossRef] [PubMed]
    [Google Scholar]
  28. USEPA ( 2004-05;). Focus on: the oxygenate MTBE. . In Technical Support Times, pp. 1–6. EPA;.
    [Google Scholar]
  29. Vandesompele J. , De Preter K. , Pattyn F. , Poppe B. , Van Roy N. , De Paepe A. , Speleman F. . ( 2002;). Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. . Genome Biol 3: research0034.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000338
Loading
/content/journal/micro/10.1099/mic.0.000338
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error