1887

Abstract

Crohn's disease is characterized by increased permeability of the intestinal mucosal barriers and an abnormal or dysregulated immune response to specific and/or commensal bacteria arising from the intestinal lumen. To determine the types of bacteria that are transgressing the mucosal barrier and colonizing the intestinal submucosal tissues, we performed 16S rRNA gene microbiota sequencing of the submucosal and mucosal tissues at the advancing disease margin in ileal Crohn's disease. Microbial populations were compared between mucosa and submucosa and non-inflammatory bowel disease (non-IBD) controls, as well as to microbial populations previously found at the centre of the disease lesion. There was no significant increase in bacteria within the submucosa of non-IBD controls at any taxonomic level when compared to the corresponding superjacent mucosa, indicating an effective mucosal barrier within the non-IBD population. In contrast, there was a statistically significant increase in 13 bacterial families and 16 bacterial genera within the submucosa at the advancing disease margin in Crohn's disease when compared to the superjacent mucosa. Major increases within the submucosa included bacteria of the Families Sphingomonadaceae, Alicyclobacillaceae, Methylobacteriaceae, Pseudomonadaceae and Prevotellaceae. Data suggest that the primary site of bacterial translocation across the mucosal barrier occurs at the margin between diseased and normal tissue, the advancing disease margin. The heterogeneity of the bacterial populations penetrating the mucosal barrier and colonizing the submucosal intestinal tissues and, therefore, contributing to the inflammatory processes, suggests that bacterial translocation is secondary to a primary event leading to a breakdown of the mucosal barrier.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000336
2016-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1608.html?itemId=/content/journal/micro/10.1099/mic.0.000336&mimeType=html&fmt=ahah

References

  1. Aine C. J. , Sanfratello L. , Adair J. C. , Knoefel J. E. , Qualls C. , Lundy S. L. , Caprihan A. , Stone D. , Stephen J. M. . ( 2014;). Characterization of a normal control group: are they healthy?. Neuroimage 84: 796–809. [CrossRef] [PubMed]
    [Google Scholar]
  2. Antoni L. , Nuding S. , Wehkamp J. , Stange E. F. . ( 2014;). Intestinal barrier in inflammatory bowel disease. . World J Gastroenterol 20: 1165–1179. [CrossRef] [PubMed]
    [Google Scholar]
  3. Awad W. A. , Molnár A. , Aschenbach J. R. , Ghareeb K. , Khayal B. , Hess C. , Liebhart D. , Dublecz K. , Hess M. . ( 2015;). Campylobacter infection in chickens modulates the intestinal epithelial barrier function. . Innate Immun 21: 151–160. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bertheau Y. , Helbling J. C. , Fortabat M. N. , Makhzami S. , Sotinel I. , Audéon C. , Nignol A. C. , Kobilinsky A. , Petit L. et al. ( 2009;). Persistence of plant DNA sequences in the blood of dairy cows fed with genetically modified (Bt176) and conventional corn silage. . J Agric Food Chem 57: 509–516. [CrossRef] [PubMed]
    [Google Scholar]
  5. Biedermann L. , Brülisauer K. , Zeitz J. , Frei P. , Scharl M. , Vavricka S. R. , Fried M. , Loessner M. J. , Rogler G. , Schuppler M. . ( 2014;). Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. . Inflamm Bowel Dis 20: 1496–1501. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burgos-Portugal J. A. , Mitchell H. M. , Castaño-Rodríguez N. , Kaakoush N. O. . ( 2014;). The role of autophagy in the intracellular survival of Campylobacter concisus . . FEBS Open Bio 4: 301–309. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cani P. D. , Delzenne N. M. . ( 2009;). The role of the gut microbiota in energy metabolism and metabolic disease. . Curr Pharm Des 15: 1546–1558. [CrossRef] [PubMed]
    [Google Scholar]
  8. Castro M. . ( 2007;). Placebo versus best-available-therapy control group in clinical trials for pharmacologic therapies: which is better?. Proc Am Thorac Soc 4: 570–573. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chiodini R. J. . ( 1989;). Crohn's disease and the mycobacterioses: a review and comparison of two disease entities. . Clin Microbiol Rev 2: 90–117. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chiodini R. J. , Dowd S. E. , Chamberlin W. M. , Galandiuk S. , Davis B. , Glassing A. . ( 2015;). Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn's disease of the ileum. . PloS One 10: e0134382. [CrossRef] [PubMed]
    [Google Scholar]
  11. Craven M. , Egan C. E. , Dowd S. E. , McDonough S. P. , Dogan B. , Denkers E. Y. , Bowman D. , Scherl E. J. , Simpson K. W. . ( 2012;). Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn's disease. . PLoS One 7: e41594. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cremon C. , Carini G. , De Giorgio R. , Stanghellini V. , Corinaldesi R. , Barbara G. . ( 2010;). Intestinal dysbiosis in irritable bowel syndrome: etiological factor or epiphenomenon?. Expert Rev Mol Diagn 10: 389–393. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Palma G. , Nadal I. , Medina M. , Donat E. , Ribes-Koninckx C. , Calabuig M. , Sanz Y. . ( 2010;). Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. . BMC Microbiol 10: 63. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dowd S. E. , Sun Y. , Wolcott R. D. , Domingo A. , Carroll J. A. . ( 2008;). Bacterial tag-encoded flx amplicon pyrosequencing (btefap) for microbiome studies: bacterial diversity in the ileum of newly weaned salmonella-infected pigs. . Foodborne Pathog Dis 5: 459–472.[CrossRef]
    [Google Scholar]
  15. Edgar R. C. . ( 2010;). Search and clustering orders of magnitude faster than blast . . Bioinformatics 26: 2460–2461. [CrossRef] [PubMed]
    [Google Scholar]
  16. Edgar R. C. , Haas B. J. , Clemente J. C. , Quince C. , Knight R. . ( 2011;). UCHIME improves sensitivity and speed of chimera detection. . Bioinformatics 27: 2194–2200. [CrossRef] [PubMed]
    [Google Scholar]
  17. Galandiuk S. , Rodriguez–Justo M. , Jeffery R. , Nicholson A. M. , Cheng Y. , Oukrif D. , Elia G. , Leedham S. J. , McDonald S. A. C. et al. ( 2012;). Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. . Gastroenterology 142: 855–864. [CrossRef]
    [Google Scholar]
  18. Gevers D. , Kugathasan S. , Denson L. A. , Vázquez-Baeza Y. , Van Treuren W. , Ren B. , Schwager E. , Knights D. , Song S. J. et al. ( 2014;). The treatment-naive microbiome in new-onset Crohn's disease. . Cell Host Microbe 15: 382–392. [CrossRef] [PubMed]
    [Google Scholar]
  19. Glassing A. , Dowd S. E. , Galandiuk S. , Davis B. , Chiodini R. J. . ( 2016;). Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. . Gut Pathog 8: 24. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gullberg E. , Söderholm J. D. . ( 2006;). Peyer's patches and m cells as potential sites of the inflammatory onset in Crohn's disease. . Ann N Y Acad Sci 1072: 218–232. [CrossRef] [PubMed]
    [Google Scholar]
  21. Guyot A. , Barrett S. P. . ( 2001;). What is an appropriate control group to identify risk factors for Clostridium difficile-associated diarrhoea?. J Antimicrob Chemother 48: 747–748. [CrossRef] [PubMed]
    [Google Scholar]
  22. Haag L. M. , Siegmund B. . ( 2014;). Exploring & exploiting our ‘other self’ – does the microbiota hold the key to the future therapy in Crohn's?. Best Pract Res Clin Gastroenterol 28: 399–409. [CrossRef] [PubMed]
    [Google Scholar]
  23. Haberman Y. , Tickle T. L. , Dexheimer P. J. , Kim M. O. , Tang D. , Karns R. , Baldassano R. N. , Noe J. D. , Rosh J. et al. ( 2014;). Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. . J Clin Invest 124: 3617–3633. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hayashi H. , Takahashi R. , Nishi T. , Sakamoto M. , Benno Y. . ( 2005;). Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. . J Med Microbiol 54: 1093–1101. [CrossRef] [PubMed]
    [Google Scholar]
  25. He J. , Li Y. , Cao Y. , Xue J. , Zhou X. . ( 2015;). The oral microbiome diversity and its relation to human diseases. . Folia Microbiol 60: 69–80. [CrossRef]
    [Google Scholar]
  26. Hold G. L. , Smith M. , Grange C. , Watt E. R. , El-Omar E. M. , Mukhopadhya I. . ( 2014;). Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years?. World J Gastroenterol 20: 1192–1210. [CrossRef] [PubMed]
    [Google Scholar]
  27. Jost L. . ( 2006;). Entropy and diversity. . Oikos 113: 363–375. [CrossRef]
    [Google Scholar]
  28. Jung C. , Hugot J. P. , Barreau F. . ( 2010;). Peyer's patches: the immune sensors of the intestine. . Int J Inflam 2010: 823710. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kaakoush N. O. , Mitchell H. M. , Man S. M. . ( 2014;). Role of emerging campylobacter species in inflammatory bowel diseases. . Inflamm Bowel Dis 20: 2189–2197. [CrossRef] [PubMed]
    [Google Scholar]
  30. Koboziev I. , Reinoso Webb C. , Furr K. L. , Grisham M. B. . ( 2014;). Role of the enteric microbiota in intestinal homeostasis and inflammation. . Free Radic Biol Med 68: 122–133. [CrossRef] [PubMed]
    [Google Scholar]
  31. Larsson E. , Tremaroli V. , Lee Y. S. , Koren O. , Nookaew I. , Fricker A. , Nielsen J. , Ley R. E. , Bäckhed F. . ( 2012;). Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. . Gut 61: 1124–1131. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee Z. M. , Bussema C. , Schmidt T. M. . ( 2009;). Rrndb: documenting the number of rRNA and tRNA genes in bacteria and archaea. . Nucleic Acids Res 37: D489–493. [CrossRef] [PubMed]
    [Google Scholar]
  33. Liu J. Z. , Anderson C. A. . ( 2014;). Genetic studies of Crohn's disease: past, present and future. . Best Pract Res Clin Gastroenterol 28: 373–386. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mallozzi M. , Viswanathan V. K. , Vedantam G. . ( 2010;). Spore-forming Bacilli and Clostridia in human disease. . Future Microbiol 5: 1109–1123. [CrossRef] [PubMed]
    [Google Scholar]
  35. Manichanh C. , Borruel N. , Casellas F. , Guarner F. . ( 2012;). The gut microbiota in IBD. . Nat Rev Gastroenterol Hepatol 9: 599–608. [CrossRef] [PubMed]
    [Google Scholar]
  36. Martinez-Medina M. , Garcia-Gil L. J. . ( 2014;). Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. . World J Gastrointest Pathophysiol 5: 213–227. [CrossRef] [PubMed]
    [Google Scholar]
  37. McMurdie P. J. , Holmes S. . ( 2014;). Waste not, want not: why rarefying microbiome data is inadmissible. . PLoS Comput Biol 10: e1003531. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mukhopadhya I. , Hansen R. , El-Omar E. M. , Hold G. L. . ( 2012;). IBD—what role do proteobacteria play?. Nature Rev 9: 219–230.
    [Google Scholar]
  39. Nielsen H. L. , Nielsen H. , Ejlertsen T. , Engberg J. , Günzel D. , Zeitz M. , Hering N. A. , Fromm M. , Schulzke J. D. , Bücker R. . ( 2011;). Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. . PLoS One 6: e23858. [CrossRef] [PubMed]
    [Google Scholar]
  40. O'Brien C. L. , Pavli P. , Gordon D. M. , Allison G. E. . ( 2014;). Detection of bacterial DNA in lymph nodes of Crohn's disease patients using high throughput sequencing. . Gut 63: 1596–1606. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pagnini C. , Corleto V. D. , Mangoni M. L. , Pilozzi E. , Torre M. S. , Marchese R. , Carnuccio A. , Giulio E. D. , Delle Fave G. . ( 2011;). Alteration of local microflora and α-defensins hyper-production in colonic adenoma mucosa. . J Clin Gastroenterol 45: 602–610. [CrossRef] [PubMed]
    [Google Scholar]
  42. Robles Alonso V. , Guarner F , Alonso R, V. . ( 2013;). Linking the gut microbiota to human health. . Br J Nutr 109: S21–S26. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sha S. , Xu B. , Wang X. , Zhang Y. , Wang H. , Kong X. , Zhu H. , Wu K. . ( 2013;). The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. . Diagn Microbiol Infect Dis 75: 245–251. [CrossRef] [PubMed]
    [Google Scholar]
  44. Silva P. E. , Costa P. S. , Ávila M. P. , Suhadolnik M. L. , Reis M. P. , Salgado A. P. , Lima M. F. , Chartone-Souza E. , Nascimento A. M. . ( 2015;). Leprous lesion presents enrichment of opportunistic pathogenic bacteria. . Springerplus 4: 187. [CrossRef] [PubMed]
    [Google Scholar]
  45. Spisák S. , Solymosi N. , Ittzés P. , Bodor A. , Kondor D. , Vattay G. , Barták B. K. , Sipos F. , Galamb O. et al. ( 2013;). Complete genes may pass from food to human blood. . PLoS One 8: e69805. [CrossRef] [PubMed]
    [Google Scholar]
  46. Turnbaugh P. J. , Ridaura V. K. , Faith J. J. , Rey F. E. , Knight R. , Gordon J. I. . ( 2009;). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. . Sci Transl Med 1: 6ra14. [CrossRef] [PubMed]
    [Google Scholar]
  47. Winter S. E. , Bäumler A. J. . ( 2014a;). Dysbiosis in the inflamed intestine: chance favors the prepared microbe. . Gut Microbes 5: 71–73. [CrossRef] [PubMed]
    [Google Scholar]
  48. Winter S. E. , Bäumler A. J. . ( 2014b;). Why related bacterial species bloom simultaneously in the gut: principles underlying the ‘like will to like' concept. . Cell Microbiol 16: 179–184. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wright E. K. , Kamm M. A. , Teo S. M. , Inouye M. , Wagner J. , Kirkwood C. D. . ( 2015;). Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. . Inflamm Bowel Dis 21: 1219–1228. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhang L. , Lee H. , Grimm M. C. , Riordan S. M. , Day A. S. , Lemberg D. A. . ( 2014;). Campylobacter concisus and inflammatory bowel disease. . World J Gastroenterol 20: 1259–1267. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zhang L. . ( 2015;). Oral Campylobacter species: Initiators of a subgroup of inflammatory bowel disease?. World J Gastroenterol 21: 9239–9244. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000336
Loading
/content/journal/micro/10.1099/mic.0.000336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error