1887

Abstract

The LitR/CarH protein family transcriptional regulator is a new type of photoreceptor based on the function of adenosyl B (AdoB) as a light-sensitive ligand. Here, we studied a semi-conserved histidine residue (His) in the light-sensing (AdoB-binding) domain at the C-terminus of LitR from a thermophilic Gram-negative bacterium, HB27. The mutation of His within LitR caused a reduction in the rate of carotenoid production in response to illumination. BIAcore analysis revealed that the illuminated-LitRpossesses high DNA-binding activity compared to the wild-type protein. The subunit structure analysis showed that LitR performed an incomplete subunit dissociation. The ability of LitR to associate with AdoBwas reduced compared with that of the wild-type protein in an equilibration dialysis experiment. Overall, these results suggest that His of LitR is involved in the association with AdoB as well as the light-sensitive DNA-binding activity based on oligomer dissociation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000321
2016-08-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1500.html?itemId=/content/journal/micro/10.1099/mic.0.000321&mimeType=html&fmt=ahah

References

  1. Bencini D. A., O’Donovan G. A., Wild J. R.. 1984; Rapid chemical degradation sequencing. BioTechniques2:4–5
    [Google Scholar]
  2. Cheng Z., Li K., Hammad L. A., Karty J. A., Bauer C. E.. 2014; Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol Microbiol91:649–664 [CrossRef][PubMed]
    [Google Scholar]
  3. Díez A., Ortiz-Guerrero J. M., Ortega A., Elías-Arnanz M., Padmanabhan S., García de la Torre J.. 2013; Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. Eur Biophys J42:463–476 [CrossRef][PubMed]
    [Google Scholar]
  4. Faraldo M. M., de Pedro M. A., Berenguer J.. 1992; Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. J Bacteriol174:7458–7462[PubMed]
    [Google Scholar]
  5. Hoshino T., Kosuge T., Hidaka Y., Tabata K., Nakahara T.. 1994; Molecular cloning and sequence analysis of the proC gene encoding delta 1-pyrroline-5-carboxylate reductase from an extremely thermophilic eubacterium Thermus thermophilus. Biochem Biophys Res Commun199:410–417 [CrossRef][PubMed]
    [Google Scholar]
  6. Jost M., Fernández-Zapata J., Polanco M. C., Ortiz-Guerrero J. M., Chen P. Y., Kang G., Padmanabhan S., Elías-Arnanz M., Drennan C. L.. 2015; Structural basis for gene regulation by a B12-dependent photoreceptor. Nature526:536–541 [CrossRef][PubMed]
    [Google Scholar]
  7. Komatsu M., Takano H., Hiratsuka T., Ishigaki Y., Shimada K., Beppu T., Ueda K.. 2006; Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol62:1534–1546 [CrossRef][PubMed]
    [Google Scholar]
  8. Koyama Y., Hoshino T., Tomizuka N., Furukawa K.. 1986; Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol166:338–340[PubMed]
    [Google Scholar]
  9. Kräutler B.. 2005; Vitamin B12: chemistry and biochemistry. Biochem Soc Trans33:806–810 [CrossRef][PubMed]
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  11. Ludwig M. L., Matthews R. G.. 1997; Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem66:269–313 [CrossRef][PubMed]
    [Google Scholar]
  12. Maniatis T., Fritsch E. F., Sambrook J.. 1982; Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  13. Marchler-Bauer A., Panchenko A. R., Shoemaker B. A., Thiessen P. A., Geer L. Y., Bryant S. H.. 2002; CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res30:281–283 [CrossRef][PubMed]
    [Google Scholar]
  14. Ortiz-Guerrero J. M., Polanco M. C., Murillo F. J., Padmanabhan S., Elías-Arnanz M.. 2011; Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A108:7565–7570 [CrossRef][PubMed]
    [Google Scholar]
  15. Pérez-Marín M. C., Padmanabhan S., Polanco M. C., Murillo F. J., Elías-Arnanz M.. 2008; Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol Microbiol67:804–819 [CrossRef][PubMed]
    [Google Scholar]
  16. Reitzer R., Gruber K., Jogl G., Wagner U. G., Bothe H., Buckel W., Kratky C.. 1999; Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure7:891–902 [CrossRef][PubMed]
    [Google Scholar]
  17. Robert X., Gouet P.. 2014; Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res42:W320–324 [CrossRef][PubMed]
    [Google Scholar]
  18. Takano H.. 2016; The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem1–10
    [Google Scholar]
  19. Takano H., Obitsu S., Beppu T., Ueda K.. 2005; Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol187:1825–1832 [CrossRef][PubMed]
    [Google Scholar]
  20. Takano H., Asker D., Beppu T., Ueda K.. 2006a; Genetic control for light-induced carotenoid production in non-phototrophic bacteria. J Ind Microbiol Biotechnol33:88–93 [CrossRef]
    [Google Scholar]
  21. Takano H., Beppu T., Ueda K.. 2006b; The CarA/LitR-family transcriptional regulator: its possible role as a photosensor and wide distribution in non-phototrophic bacteria. Biosci Biotechnol Biochem70:2320–2324 [CrossRef]
    [Google Scholar]
  22. Takano H., Kondo M., Usui N., Usui T., Ohzeki H., Yamazaki R., Washioka M., Nakamura A., Hoshino T. et al. 2011; Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J Bacteriol193:2451–2459 [CrossRef][PubMed]
    [Google Scholar]
  23. Takano H., Agari Y., Hagiwara K., Watanabe R., Yamazaki R., Beppu T., Shinkai A., Ueda K.. 2014; LdrP, a cAMP receptor protein/FNR family transcriptional regulator, serves as a positive regulator for the light-inducible gene cluster in the megaplasmid of Thermus thermophilus. Microbiology160:2650–2660 [CrossRef][PubMed]
    [Google Scholar]
  24. Takano H., Hagiwara K., Ueda K.. 2015a; Fundamental role of cobalamin biosynthesis in the developmental growth of Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol99:2329–2337 [CrossRef]
    [Google Scholar]
  25. Takano H., Mise K., Hagiwara K., Hirata N., Watanabe S., Toriyabe M., Shiratori-Takano H., Ueda K.. 2015b; Role and function of LitR, an adenosyl B12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in regulation of carotenoid production. J Bacteriol197:2301–2315 [CrossRef]
    [Google Scholar]
  26. Takano H., Nishiyama T., Amano S., Beppu T., Kobayashi M., Ueda K.. 2016; Streptomyces metabolites in divergent microbial interactions. J Ind Microbiol Biotechnol43:143–148 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000321
Loading
/content/journal/micro/10.1099/mic.0.000321
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error