1887

Abstract

Shewanella spp. are currently considered to be emerging pathogens that can code for a bla OXA carbapenemase in their chromosome. Complete genome analysis of the clinical isolate Shewanella sp. Sh95 revealed that this strain is a novel species, which shares a lineage with marine isolates. Characterization of its resistome showed that it codes for genes drfA15, qacH and bla OXA-48. We propose that Shewanella sp. Sh95 acts as reservoir of bla OXA-48. Moreover, analysis of mobilome showed that it contains a novel integrative and conjugative element (ICE), named ICESh95. Comparative analysis between the close relatives ICESpuPO1 from Shewanella sp. W3-18-1 and ICE SXT from Vibrio cholerae showed that ICESh95 encompassed two new regions, a type III restriction modification system and a multidrug resistance integron. The integron platform contained a novel arrangement formed by gene cassettes drfA15 and qacH, and a class C-attC group II intron. Furthermore, insertion of ICESh95 occurred at a unique target site, which correlated with the presence of a different xis/int module. Mobility of ICESh95 was assessed and demonstrated its ability to self-transfer with high efficiency to different species of bacteria. Our results show that ICESh95 is a self-transmissible, mobile element, which can contribute to the dissemination of antimicrobial resistance; this is clearly a threat when natural bacteria from water ecosystems, such as Shewanella, act as vectors in its propagation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000310
2016-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1335.html?itemId=/content/journal/micro/10.1099/mic.0.000310&mimeType=html&fmt=ahah

References

  1. Ananth A. L., Nassiri N., Pamoukian V. N..( 2014;). Shewanella algae: a rare cause of necrotizing fasciitis. . Surg Infect 15: 336–338. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al.( 2008;). The RAST Server: rapid annotations using subsystems technology. . BMC Genomics 9: 75. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al.( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol 19: 455–477. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beaber J. W., Hochhut B., Waldor M. K..( 2002;). Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. . J Bacteriol 184: 4259–4269. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bordeleau E., Brouillette E., Robichaud N., Burrus V..( 2009;). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. . Environ Microbiol 12: 510–523. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burrus V., Quezada-Calvillo R., Marrero J., Waldor M. K..( 2006;). SXT-related integrating conjugative element in New World Vibrio cholerae. . Appl Environ Microbiol 72: 3054–3057. [CrossRef] [PubMed]
    [Google Scholar]
  7. Carraro N., Burrus V..( 2014;). Biology of three ICE families: SXT/R391, ICEBs1, and ICESt1/ICESt3. . Microbiol Spectr 2::MDNA3-0008-2014. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carver T., Berriman M., Tivey A., Patel C., Böhme U., Barrell B. G., Parkhill J., Rajandream M. A..( 2008;). Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. . Bioinformatics 24: 2672–2676. [CrossRef] [PubMed]
    [Google Scholar]
  9. Centrón D., Roy P. H..( 2002;). Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. . Antimicrob Agents Chemother 46: 1402–1409. [CrossRef] [PubMed]
    [Google Scholar]
  10. Choi K. H., Schweizer H. P..( 2006;). Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. . Nat Protoc 1: 153–161. [CrossRef] [PubMed]
    [Google Scholar]
  11. Constant J., Chernev I., Gomez E..( 2014;). Shewanella putrefaciens infective endocarditis. . Braz J Infect Dis 18: 686–688. [CrossRef] [PubMed]
    [Google Scholar]
  12. Contreras-Moreira B., Vinuesa P..( 2013;). GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. . Appl Environ Microbiol 79: 7696–7701. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Palmenaer D., Siguier P., Mahillon J..( 2008;). IS4 family goes genomic. . BMC Evol Biol 8: 18. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dey S., Bhattacharya D., Roy S., Nadgir S. D., Patil A., Kholkute S. D..( 2015;). Shewanella algae in acute gastroenteritis. . Indian J Med Microbiol 33: 172–175. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dhillon B. K., Laird M. R., Shay J. A., Winsor G. L., Lo R., Nizam F., Pereira S. K., Waglechner N., McArthur A. G. et al.( 2015;). IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. . Nucleic Acids Res 43: W104–108. [CrossRef] [PubMed]
    [Google Scholar]
  16. Drouin F., Mélançon J., Roy P. H..( 2002;). The IntI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. . J Bacteriol 184: 1811–1815. [CrossRef] [PubMed]
    [Google Scholar]
  17. Fredrickson J. K., Romine M. F., Beliaev A. S., Auchtung J. M., Driscoll M. E., Gardner T. S., Nealson K. H., Osterman A. L., Pinchuk G. et al.( 2008;). Towards environmental systems biology of Shewanella. . Nat Rev Microbiol 6: 592–603. [CrossRef] [PubMed]
    [Google Scholar]
  18. Garriss G., Waldor M. K., Burrus V..( 2009;). Mobile antibiotic resistance encoding elements promote their own diversity. . PLoS Genet 5: e1000775. [CrossRef] [PubMed]
    [Google Scholar]
  19. Garriss G., Poulin-Laprade D., Burrus V..( 2013;). DNA-damaging agents induce the RecA-independent homologous recombination functions of integrating conjugative elements of the SXT/R391 family. . J Bacteriol 195: 1991–2003. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goyal R., Kaur N., Thakur R..( 2011;). Human soft tissue infection by the emerging pathogen Shewanella algae. . J Infect Dev Ctries 5: 310–312. [CrossRef] [PubMed]
    [Google Scholar]
  22. Guindon S., Gascuel O..( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52: 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  23. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O..( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59: 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gupta S. K., Padmanabhan B. R., Diene S. M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J. M..( 2014;). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. . Antimicrob Agents Chemother 58: 212–220. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hall R. M..( 2012;). Integrons and gene cassettes: hotspots of diversity in bacterial genomes. . Ann N Y Acad Sci 1267: 71–78. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hochhut B., Waldor M. K..( 1999;). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. . Mol Microbiol 32: 99–110. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hochhut B., Lotfi Y., Mazel D., Faruque S. M., Woodgate R., Waldor M. K..( 2001;). Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. . Antimicrob Agents Chemother 45: 2991–3000. [CrossRef] [PubMed]
    [Google Scholar]
  28. Holt H. M., Gahrn-Hansen B., Bruun B..( 2005;). Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. . Clin Microbiol Infect 11: 347–352. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kobayashi I..( 2001;). Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. . Nucleic Acids Res 29: 3742–3756. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lambowitz A. M., Zimmerly S..( 2011;). Group II introns: mobile ribozymes that invade DNA. . Cold Spring Harb Perspect Biol 3: a003616. [CrossRef] [PubMed]
    [Google Scholar]
  31. Li L., Stoeckert C. J., Roos D. S..( 2003;). OrthoMCL: identification of ortholog groups for eukaryotic genomes. . Genome Res 13: 2178–2189. [CrossRef] [PubMed]
    [Google Scholar]
  32. Marrero J., Waldor M. K..( 2007;). Determinants of entry exclusion within Eex and TraG are cytoplasmic. . J Bacteriol 189: 6469–6473. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pembroke J. T., Piterina A. V..( 2006;). A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. . FEMS Microbiol Lett 264: 80–88. [CrossRef] [PubMed]
    [Google Scholar]
  34. Poirel L., Pham J. N., Cabanne L., Gatus B. J., Bell S. M., Nordmann P..( 2004;). Carbapenem-hydrolysing metallo-beta-lactamases from Klebsiella pneumoniae and Escherichia coli isolated in Australia. . Pathology 36: 366–367. [CrossRef] [PubMed]
    [Google Scholar]
  35. Potron A., Poirel L., Rondinaud E., Nordmann P..( 2013;). Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. . Euro Surveill 18: 20549. [CrossRef]
    [Google Scholar]
  36. Poulin-Laprade D., Burrus V..( 2015;). A λ Cro-like repressor is essential for the induction of conjugative transfer of SXT/R391 elements in response to DNA damage. . J Bacteriol 197: 3822–3833. [CrossRef] [PubMed]
    [Google Scholar]
  37. Quiroga C., Roy P. H., Centrón D..( 2008;). The S.ma.I2 class C group II intron inserts at integron attC sites. . Microbiology 154: 1341–1353. [CrossRef] [PubMed]
    [Google Scholar]
  38. Quiroga C., Centrón D..( 2009;). Using genomic data to determine the diversity and distribution of target site motifs recognized by class C-attC group II introns. . J Mol Evol 68: 539–549. [CrossRef] [PubMed]
    [Google Scholar]
  39. Raghavendra N. K., Bheemanaik S., Rao D. N..( 2012;). Mechanistic insights into type III restriction enzymes. . Front Biosci 17: 1094–1107. [CrossRef]
    [Google Scholar]
  40. Ramírez M. S., Merkier A. K., Almuzara M., Vay C., Centrón D., Merkier A. K..( 2010;). Reservoir of antimicrobial resistance determinants associated with horizontal gene transfer in clinical isolates of the genus Shewanella. . Antimicrob Agents Chemother 54: 4516–4517. [CrossRef] [PubMed]
    [Google Scholar]
  41. Romine M. F., Carlson T. S., Norbeck A. D., McCue L. A., Lipton M. S..( 2008;). Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. . Appl Environ Microbiol 74: 3257–3265. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sekine Y., Eisaki N., Ohtsubo E..( 1994;). Translational control in production of transposase and in transposition of insertion sequence IS3. . J Mol Biol 235: 1406–1420. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sharma K. K., Kalawat U..( 2010;). Emerging infections: shewanella - a series of five cases. . J Lab Physicians 2: 61–65. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al.( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. . Mol Syst Biol 7,: 539. [CrossRef] [PubMed]
    [Google Scholar]
  45. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M..( 2006;). ISfinder: the reference centre for bacterial insertion sequences. . Nucleic Acids Res 34: D32–D36. (Database issue). [CrossRef] [PubMed]
    [Google Scholar]
  46. Srinivas J., Pillai M., Vinod V., Dinesh R. K..( 2015;). Skin and soft tissue infections due to Shewanella algae - an emerging pathogen. . J Clin Diagn Res 9: 16–20. DC.
    [Google Scholar]
  47. Sukumaran J., Holder M. T..( 2010;). DendroPy: a Python library for phylogenetic computing. . Bioinformatics 26: 1569–1571. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  49. Taviani E., Spagnoletti M., Ceccarelli D., Haley B. J., Hasan N. A., Chen A., Colombo M. M., Huq A., Colwell R. R..( 2012;). Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. . FEBS Lett 586: 1617–1621. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tsai M. S., You H. L., Tang Y. F., Liu J. W..( 2008;). Shewanella soft tissue infection: case report and literature review. . Int J Infect Dis 12: e119124. [CrossRef] [PubMed]
    [Google Scholar]
  51. Waldor M. K., Tschäpe H., Mekalanos J. J..( 1996;). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. . J Bacteriol 178: 4157–4165.[PubMed]
    [Google Scholar]
  52. Wozniak R. A., Waldor M. K..( 2009;). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. . PLoS Genet 5: e1000439. [CrossRef] [PubMed]
    [Google Scholar]
  53. Wozniak R. A., Fouts D. E., Spagnoletti M., Colombo M. M., Ceccarelli D., Garriss G., Déry C., Burrus V., Waldor M. K..( 2009;). Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. . PLoS Genet 5: e1000786. [CrossRef] [PubMed]
    [Google Scholar]
  54. Yiallouros P., Mavri A., Attilakos A., Moustaki M., Leontsini F., Karpathios T..( 2013;). Shewanella putrefaciens bacteraemia associated with terminal ileitis. . Paediatr Int Child Health 33: 193–195. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F. M., Larsen M. V..( 2012;). Identification of acquired antimicrobial resistance genes. . J Antimicrob Chemother 67: 2640–2644. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S..( 2011;). PHAST: a fast phage search tool. . Nucleic Acids Res 39: W347–352. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zong Z..( 2012;). Discovery of bla(OXA-199), a chromosome-based bla(OXA-48)-like variant, in Shewanella xiamenensis. . PLoS One 7: e48280. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000310
Loading
/content/journal/micro/10.1099/mic.0.000310
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error