1887

Abstract

Franconibacter (Enterobacter, Cronobacter) pulveris bacteria share several typical characteristics with, and hence pose a challenge for the detection of, Cronobacter sakazakii, an emerging opportunistic pathogen, which can cause severe infections in neonates. A structurally variable O-specific polysaccharide (OPS) called O antigen provides the major basis for the typing of Gram-negative bacteria. We investigated the structure and genetics of the O antigen of F. pulveris G3872 (designated O1). An OPS was isolated by mild alkaline degradation of the LPS, whereas the same polysaccharide and its oligosaccharide fragments were obtained by mild acid degradation. Studies by sugar analysis and NMR spectroscopy showed that the OPS contained d-ribose, l-rhamnose (l-Rha) and a rarely occurring monosaccharide 4-deoxy-d-arabino-hexose, and the OPS structure was established. The O-antigen gene cluster of F. pulveris G3872 between JUMPStart and gnd genes includes putative genes for glycosyltransferases, ATP-binding cassette (ABC)-transporter genes wzm and wzt, and genes for the synthesis of l-Rha, but no genes for the synthesis of 4-deoxy-d-arabino-hexose. A mutation test with the wzm gene confirmed that the OPS is synthesized and exported by the ABC-transporter-dependent pathway. A trifunctional transferase was suggested to catalyse formation of two glycosidic linkages and add a methyl group to the non-reducing end of the OPS to terminate the chain elongation. A carbohydrate-binding module that presumably recognizes the terminal methyl-modified monosaccharide was found at the C-terminus of Wzt. Primers specific for F. pulveris G3872 were designed based on the wzm gene, which has potential to be used for identification and detection of the O1 serogroup.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000307
2016-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1103.html?itemId=/content/journal/micro/10.1099/mic.0.000307&mimeType=html&fmt=ahah

References

  1. Achtman M., Pluschke G..( 1986;). Clonal analysis of descent and virulence among selected Escherichia coli. . Annu Rev Microbiol 40: 185–210. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allison G. E., Verma N. K..( 2000;). Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. . Trends Microbiol 8: 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bastin D. A., Reeves P. R..( 1995;). Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. . Gene 164: 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bock K., Pedersen C..( 1983;). Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. . Adv Carbohydr Chem Biochem 41: 27–– 66. [CrossRef]
    [Google Scholar]
  5. Bowen A. B., Braden C. R..( 2006;). Invasive Enterobacter sakazakii disease in infants. . Emerg Infect Dis 12: 1185–1189. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P..( 2013;). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. . Syst Appl Microbiol 36: 309–319. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cunneen M. M., Liu B., Wang L., Reeves P. R..( 2013;). Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, Gnu and GnaB. . PLoS One 8: e67646. [CrossRef] [PubMed]
    [Google Scholar]
  8. Feng L., Senchenkova S. N., Yang J., Shashkov A. S., Tao J., Guo H., Cheng J., Ren Y., Knirel Y. A. et al.( 2004;). Synthesis of the heteropolysaccharide O antigen of Escherichia coli O52 requires an ABC transporter: structural and genetic evidence. . J Bacteriol 186: 4510–4519. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gamian A., Romanowska E., Romanowska A., Lugowski C., Dabrowski J., Trauner K..( 1985;). Citrobacter lipopolysaccharides: structure elucidation of the O-specific polysaccharide from strain PCM 1487 by mass spectrometry, one-dimensional and two-dimensional 1H-NMR spectroscopy and methylation analysis. . Eur J Biochem 146: 641–647. [CrossRef] [PubMed]
    [Google Scholar]
  10. Greenfield L. K., Whitfield C..( 2012;). Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. . Carbohydr Res 356: 12–24. [CrossRef] [PubMed]
    [Google Scholar]
  11. Guan S., Bastin D. A., Verma N. K..( 1999;). Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. . Microbiology 145: 1263–1273. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hao Y., Lam J. S..( 2011;). Pathways for the biosynthesis of NDP sugars. . In Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells , pp. 195–235. Edited by Knirel Y. A., Valvano M. A.. Vienna:: Springer;.
    [Google Scholar]
  13. Horton D., Wander J. D..( 1970;). Calculation of molecular rotation by summation of partial conformational contributions. Part II. Rotations of the 1,6-anhydro-deoxy-β-d-hexopyranoses, 2,7-anhydro-β-d-heptulopyranoses, and their acetates. . Carbohydr Res 14: 83–94.[CrossRef]
    [Google Scholar]
  14. Izquierdo L., Merino S., Regué M., Rodriguez F., Tomás J. M..( 2003;). Synthesis of a Klebsiella pneumoniae O-antigen heteropolysaccharide (O12) requires an ABC 2 transporter. . J Bacteriol 185: 1634–1641. [CrossRef] [PubMed]
    [Google Scholar]
  15. Katzenellenbogen E., Kocharova N. A., Zatonsky G. V., Witkowska D., Bogulska M., Shashkov A. S., Gamian A., Knirel Y. A..( 2003;). Structural and serological studies on a new 4-deoxy-d-arabino-hexose-containing O-specific polysaccharide from the lipopolysaccharide of Citrobacter braakii PCM 1531 (serogroup O6). . Eur J Biochem 270: 2732–2738. [CrossRef] [PubMed]
    [Google Scholar]
  16. Knirel Y. A., Kocharova N. A., Bystrova O. V, Katzenellenbogen E., Gamian A..( 2002;). Structures and serology of the O-specific polysaccharides of bacteria of the genus Citrobacter. . Arch Immunol Ther Exp 50: 379–391.
    [Google Scholar]
  17. Kocharova N. A., Knirel Y. A., Kholodkova E. V., Stanislavsky E. S..( 1995;). Structure of the O-specific polysaccharide chain of Citrobacter freundii O28,1c lipopolysaccharide. . Carbohydr Res 279: 327–330. [CrossRef] [PubMed]
    [Google Scholar]
  18. Leontein K., Lönngren J..( 1993;). Determination of the absolute configuration of sugars by gas-liquid chromatography of their acetylated 2-octyl glycosides. . Methods Carbohydr Chem 9: 87–89.
    [Google Scholar]
  19. Mann E., Whitfield C..( 2016;). A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates. . Can J Chem 94: 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mann E., Mallette E., Clarke B. R., Kimber M. S., Whitfield C..( 2016;). The Klebsiella pneumoniae O12 ATP-binding cassette (ABC) transporter recognizes the terminal residue of its O-antigen polysaccharide substrate. . J Biol Chem 291: 9748–9761. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mann E., Ovchinnikova O. G., King J. D., Whitfield C..( 2015;). Bacteriophage-mediated glucosylation can modify lipopolysaccharide O-antigens synthesized by an ATP-binding cassette (ABC) transporter-dependent assembly mechanism. . J Biol Chem 290: 25561–25570. [CrossRef] [PubMed]
    [Google Scholar]
  22. Meier-Dieter U., Barr K., Starman R., Hatch L., Rick P. D..( 1992;). Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. . J Biol Chem 267: 746–753.[PubMed]
    [Google Scholar]
  23. Merino S., Canals R., Knirel Y. A., Tomás J. M..( 2015;). Molecular and chemical analysis of the lipopolysaccharide from Aeromonas hydrophila strain AH-1 (serotype O11). . Mar Drugs 13: 2233–2249. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mills J. A., Motichka K., Jucker M., Wu H. P., Uhlik B. C., Stern R. J., Scherman M. S., Vissa V. D., Pan F. et al.( 2004;). Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. . J Biol Chem 279: 43540–43546. [CrossRef] [PubMed]
    [Google Scholar]
  25. Perepelov A. V., Li D., Liu B., Senchenkova S. N., Guo D., Shevelev S. D., Shashkov A. S., Guo X., Feng L. et al.( 2009;). Structural and genetic characterization of Escherichia coli O99 antigen. . FEMS Immunol Med Microbiol 57: 80–87. [CrossRef] [PubMed]
    [Google Scholar]
  26. Raetz C. R., Whitfield C..( 2002;). Lipopolysaccharide endotoxins. . Annu Rev Biochem 71: 635–700. [CrossRef] [PubMed]
    [Google Scholar]
  27. Robbins P. W., Uchida T..( 1962;). Studies on the chemical basis of the phage conversion of O-antigens in the E-group salmonellae. . Biochemistry 1: 323–335. [CrossRef] [PubMed]
    [Google Scholar]
  28. Romanowska E., Romanowska A., Lugowski C., Katzenellenbogen E..( 1981;). Structural and serological analysis of Citrobacter-036-specific polysaccharide, the homopolymer of (beta 1→2)-linked 4-deoxy-d-arabinohexopyranosyl units. . Eur J Biochem 121: 119–123. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rubirés X., Saigi F., Piqué N., Climent N., Merino S., Albertí S., Tomás J. M., Regué M..( 1997;). A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. . J Bacteriol 179: 7581–7586.[PubMed] [CrossRef]
    [Google Scholar]
  30. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B..( 2000;). Artemis: sequence visualization and annotation. . Bioinformatics 16: 944–945. [CrossRef] [PubMed]
    [Google Scholar]
  31. Saigí F., Climent N., Piqué N., Sanchez C., Merino S., Rubirés X., Aguilar A., Tomás J. M., Regué M..( 1999;). Genetic analysis of the Serratia marcescens N28b O4 antigen gene cluster. . J Bacteriol 181: 1883–1891.[PubMed]
    [Google Scholar]
  32. Sarkar S., Ulett G. C., Totsika M., Phan M. D., Schembri M. A..( 2014;). Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli. . PLoS One 9: e94786. [CrossRef] [PubMed]
    [Google Scholar]
  33. Staden R..( 1996;). The Staden sequence analysis package. . Mol Biotechnol 5: 233–241. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stephan R., Grim C. J., Gopinath G. R., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Fanning S., Tall B. D..( 2014;). Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. . Int J Syst Evol Microbiol 64: 3402–3410. [CrossRef] [PubMed]
    [Google Scholar]
  35. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A..( 2008;). Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. . Int J Syst Evol Microbiol 58: 237–241. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sun Q., Knirel Y. A., Wang J., Luo X., Senchenkova S. N., Lan R., Shashkov A. S., Xu J..( 2014;). Serotype-converting bacteriophage SfII encodes an acyltransferase protein that mediates 6-O-acetylation of GlcNAc in Shigella flexneri O-antigens, conferring on the host a novel O-antigen epitope. . J Bacteriol 196: 3656–3666. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang L., Reeves P. R..( 1998;). Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. . Infect Immun 66: 3545–3551.[PubMed]
    [Google Scholar]
  38. West N. P., Sansonetti P., Mounier J., Exley R. M., Parsot C., Guadagnini S., Prévost M. C., Prochnicka-Chalufour A., Delepierre M. et al.( 2005;). Optimization of virulence functions through glucosylation of Shigella LPS. . Science 307: 1313–1317. [CrossRef] [PubMed]
    [Google Scholar]
  39. Westphal O., Jann K..( 1965;). Bacterial lipopolysaccharides. Extraction with phenol water and further applications of the procedure. . Methods Carbohydr Chem 5: 83–91.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000307
Loading
/content/journal/micro/10.1099/mic.0.000307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error