1887

Abstract

has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000293
2016-07-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1185.html?itemId=/content/journal/micro/10.1099/mic.0.000293&mimeType=html&fmt=ahah

References

  1. Albus A., Fournier J. M., Wolz C., Boutonnier A., Ranke M., Høiby N., Hochkeppel H., Döring G.. 1998; Staphylococcus aureus capsular types and antibody response to lung infection in patients with cystic fibrosis. J Clin Microbiol26:2505–2509
    [Google Scholar]
  2. Bestebroer J., Poppelier M. J., Ulfman L. H., Lenting P. J., Denis C. V., van Kessel K. P., van Strijp J. A., de Haas C. J.. 2007; Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood109:2936–2943 [CrossRef][PubMed]
    [Google Scholar]
  3. Boyle-Vavra S., Li X., Alam M. T., Read T. D., Sieth J., Cywes-Bentley C., Dobbins G., David M. Z., Kumar N. et al. 2015; USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio6:1–10 [CrossRef]
    [Google Scholar]
  4. Cheung G. Y., Wang R., Khan B. A., Sturdevant D. E., Otto M.. 2011; Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun79:1927–1935 [CrossRef][PubMed]
    [Google Scholar]
  5. Cunnion K. M., Lee J. C., Frank M. M.. 2001; Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect Immun69:6796–6803 [CrossRef][PubMed]
    [Google Scholar]
  6. Cunnion K. M., Zhang H. M., Frank M. M.. 2003; Availability of complement bound to Staphylococcus aureus to interact with membrane complement receptors influences efficiency of phagocytosis. Infect Immun71:656–662[PubMed][CrossRef]
    [Google Scholar]
  7. Fattom A., Schneerson R., Watson D. C., Karakawa W. W., Fitzgerald D., Pastan I., Li X., Shiloach J., Bryla D. A. et al. 1993; Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect Immun61:1023–1032[PubMed]
    [Google Scholar]
  8. Fattom A., Matalon A., Buerkert J., Taylor K., Damaso S., Boutriau D.. 2015; Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: Phase III randomized study. Hum Vaccin Immunother11:632–641 [CrossRef][PubMed]
    [Google Scholar]
  9. Foster T. J.. 2005; Immune evasion by staphylococci. Nat Rev Microbiol3:948–958 [CrossRef][PubMed]
    [Google Scholar]
  10. Foster T. J., Geoghegan J. A., Ganesh V. K., Höök M.. 2013; Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol12:49–62[CrossRef]
    [Google Scholar]
  11. Fowler V. G., Allen K. B., Moreira E. D., Moustafa M., Isgro F., Boucher H. W., Corey G. R., Carmeli Y., Betts R. et al. 2013; Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA309:1368–1378 [CrossRef][PubMed]
    [Google Scholar]
  12. Gros P., Milder F. J., Janssen B. J.. 2008; Complement driven by conformational changes. Nat Rev Immunol8:48–58 [CrossRef][PubMed]
    [Google Scholar]
  13. Herbert S., Newell S. W., Lee C., Wieland K. P., Dassy B., Fournier J. M., Wolz C., Döring G.. 2001; Regulation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides by CO(2). J Bacteriol183:4609–4613 [CrossRef][PubMed]
    [Google Scholar]
  14. Hochkeppel H. K., Braun D. G., Vischer W., Imm A., Sutter S., Staeubli U., Guggenheim R., Kaplan E. L., Boutonnier A. et al. 1987; Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol25:526–530[PubMed]
    [Google Scholar]
  15. Itoh S., Hamada E., Kamoshida G., Yokoyama R., Takii T., Onozaki K., Tsuji T.. 2010; Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol47:932–938 [CrossRef][PubMed]
    [Google Scholar]
  16. Jones C.. 2005; Revised structures for the capsular polysaccharides from Staphylococcus aureus Types 5 and 8, components of novel glycoconjugate vaccines. Carbohydr Res340:1097–1106 [CrossRef][PubMed]
    [Google Scholar]
  17. Kang M., Ko Y. P., Liang X., Ross C. L., Liu Q., Murray B. E., Höök M.. 2013; Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem288:20520–20531 [CrossRef][PubMed]
    [Google Scholar]
  18. Kinoshita T., Takata Y., Kozono H., Takeda J., Hong K. S., Inoue K.. 1988; C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol141:3895–3901[PubMed]
    [Google Scholar]
  19. Ko Y. P., Liang X., Smith C. W., Degen J. L., Höök M.. 2011; Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem286:9865–9874 [CrossRef][PubMed]
    [Google Scholar]
  20. Ko Y. P., Kuipers A., Freitag C. M., Jongerius I., Medina E., van Rooijen W. J., Spaan A. N., van Kessel K. P., Höök M. et al. 2013; Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog9:e1003816 [CrossRef][PubMed]
    [Google Scholar]
  21. Lattar S. M., Noto Llana M., Denoël P., Germain S., Buzzola F. R., Lee J. C., Sordelli D. O.. 2014; Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infect Immun82:83–91 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee J. C., Liu M. J., Parsonnet J., Arbeit R. D.. 1990; Expression of type 8 capsular polysaccharide and production of toxic shock syndrome toxin 1 are associated among vaginal isolates of Staphylococcus aureus. J Clin Microbiol28:2612–2615[PubMed]
    [Google Scholar]
  23. Levy J., Licini L., Haelterman E., Moris P., Lestrate P., Damaso S., Van Belle P., Boutriau D.. 2015; Safety and immunogenicity of an investigational 4-component Staphylococcus aureus vaccine with or without AS03B adjuvant: Results of a randomized phase I trial. Hum Vaccin Immunother11:620–631 [CrossRef][PubMed]
    [Google Scholar]
  24. Lowy F. D.. 1998; Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  25. Nemeth J., Lee J. C.. 1995; Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect Immun63:375–380[PubMed]
    [Google Scholar]
  26. Nilsson I. M., Lee J. C., Bremell T., Rydén C., Tarkowski A.. 1997; The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun65:4216–4221[PubMed]
    [Google Scholar]
  27. Nissen M., Marshall H., Richmond P., Shakib S., Jiang Q., Cooper D., Rill D., Baber J., Eiden J. et al. 2015; A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine33:1846–1854 [CrossRef][PubMed]
    [Google Scholar]
  28. O'Riordan K., Lee J. C.. 2004; Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev17:218–234[PubMed][CrossRef]
    [Google Scholar]
  29. Otto M.. 2013; Community-associated MRSA: what makes them special?. IJMM303:324–330 [CrossRef][PubMed]
    [Google Scholar]
  30. Palma M., Nozohoor S., Schennings T., Heimdahl A., Flock J. I.. 1996; Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect Immun64:5284–5289[PubMed]
    [Google Scholar]
  31. Pang Y. Y., Schwartz J., Thoendel M., Ackermann L. W., Horswill A. R., Nauseef W. M.. 2010; agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun2:546–559 [CrossRef][PubMed]
    [Google Scholar]
  32. Park S., Gerber S., Lee J. C.. 2014; Antibodies to Staphylococcus aureus serotype 8 capsular polysaccharide react with and protect against serotype 5 and 8 isolates. Infect Immun82:5049–5055 [CrossRef][PubMed]
    [Google Scholar]
  33. Pöhlmann-Dietze P., Ulrich M., Kiser K. B., Döring G., Lee J. C., Fournier J. M., Botzenhart K., Wolz C.. 2000; Adherence of Staphylococcus aureus to endothelial cells: influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect Immun68:4865–4871[PubMed][CrossRef]
    [Google Scholar]
  34. Ricklin D., Hajishengallis G., Yang K., Lambris J. D.. 2010; Complement: a key system for immune surveillance and homeostasis. Nat Immunol11:785–797 [CrossRef][PubMed]
    [Google Scholar]
  35. Rossolini G. M., Arena F., Pecile P., Pollini S.. 2014; Update on the antibiotic resistance crisis. Curr Opin Pharmacol18:56–60 [CrossRef][PubMed]
    [Google Scholar]
  36. Schenk S., Laddaga R. A.. 1992; Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett73:133–138[PubMed][CrossRef]
    [Google Scholar]
  37. Shannon O., Uekotter A., Flock J.. 2005; Extracellular fibrinogen binding protein Efb from Staphylococcus aureus as an antiplatelet agent in vivo. Thromb Haemost1–5
    [Google Scholar]
  38. Slot J. W., Geuze H. J.. 2007; Cryosectioning and immunolabeling. Nat Protoc2:2480–2491 [CrossRef][PubMed]
    [Google Scholar]
  39. Sompolinsky D., Samra Z., Karakawa W. W., Vann W. F., Schneerson R., Malik Z.. 1985; Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol22:828–834[PubMed]
    [Google Scholar]
  40. Stemerding A. M., Köhl J., Pandey M. K., Kuipers A., Leusen J. H., Boross P., Nederend M., Vidarsson G., Weersink A. Y. et al. 2013; Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FLIPr) and its homologue FLIPr-like are potent FcγR antagonists that inhibit IgG-mediated effector functions. J Immunol191:353–362 [CrossRef][PubMed]
    [Google Scholar]
  41. Thakker M., Park J. S., Carey V., Lee J. C.. 1998; Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun66:5183–5189[PubMed]
    [Google Scholar]
  42. Tong S. Y., Davis J. S., Eichenberger E., Holland T. L., Fowler V. G.. 2015; Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev28:603–661 [CrossRef][PubMed]
    [Google Scholar]
  43. van Kessel K. P., Bestebroer J., van Strijp J. A.. 2014; Neutrophil-mediated phagocytosis of staphylococcus aureus. Front Immunol5:467 [CrossRef][PubMed]
    [Google Scholar]
  44. Voyich J. M., Vuong C., DeWald M., Nygaard T. K., Kocianova S., Griffith S., Jones J., Iverson C., Sturdevant D. E. et al. 2009; The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J Infect Dis199:1698–1706 [CrossRef][PubMed]
    [Google Scholar]
  45. Vuong C., Yeh A. J., Cheung G. Y., Otto M.. 2015; Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs3784:73–93
    [Google Scholar]
  46. Wacker M., Wang L., Kowarik M., Dowd M., Lipowsky G., Faridmoayer A., Shields K., Park S., Alaimo C. et al. 2014; Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis209:1551–1561 [CrossRef][PubMed]
    [Google Scholar]
  47. Watts A., Ke D., Wang Q., Pillay A., Nicholson-Weller A., Lee J. C.. 2005; Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun73:3502–3511 [CrossRef][PubMed]
    [Google Scholar]
  48. Wilkinson B. J., Sisson S. P., Kim Y., Peterson P. K.. 1979; Localization of the third component of complement on the cell wall of encapsulated Staphylococcus aureus M: implications for the mechanism of resistance to phagocytosis. Infect Immun26:1159–1163[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000293
Loading
/content/journal/micro/10.1099/mic.0.000293
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error