1887

Abstract

Ciprofloxacin is a widely used antibiotic, in the class of quinolones, for treatment of infections. The immediate response of to subinhibitory concentrations of ciprofloxacin has been investigated previously. However, the long-term phenotypic adaptation, which identifies the fitted phenotypes that have been selected during evolution with subinhibitory concentrations of ciprofloxacin, has not been studied. We chose an experimental evolution approach to investigate how exposure to subinhibitory concentrations of ciprofloxacin changes the evolution of populations compared to unexposed populations. Three replicate populations of PAO1 and its hypermutable mutant Δ were cultured aerobically for approximately 940 generations by daily passages in LB medium with and without subinhibitory concentration of ciprofloxacin and aliquots of the bacterial populations were regularly sampled and kept at  − 80 °C for further investigations. We investigate here phenotypic changes between the ancestor (50 colonies) and evolved populations (120 colonies/strain). Decreased protease activity and swimming motility, higher levels of quorum-sensing signal molecules and occurrence of mutator subpopulations were observed in the ciprofloxacin-exposed populations compared to the ancestor and control populations. Transcriptomic analysis showed downregulation of the type III secretion system in evolved populations compared to the ancestor population and upregulation of denitrification genes in ciprofloxacin-evolved populations. In conclusion, the presence of antibiotics at subinhibitory concentration in the environment affects bacterial evolution and further studies are needed to obtain insight into the dynamics of the phenotypes and the mechanisms involved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000273
2016-05-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/865.html?itemId=/content/journal/micro/10.1099/mic.0.000273&mimeType=html&fmt=ahah

References

  1. Andersson D. I., Hughes D.. 2014; Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol12:465–478 [CrossRef][PubMed]
    [Google Scholar]
  2. Becher A., Schweizer H. P.. 2000; Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques29:948–950, 952[PubMed]
    [Google Scholar]
  3. Bjarnsholt T., Jensen P. O., Jakobsen T. H., Phipps R., Nielsen A. K., Rybtke M. T., Tolker-Nielsen T., Givskov M., Høiby N., Ciofu O., Scandinavian Cystic Fibrosis Study Consortium. 2010; Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One5:e10115 [CrossRef][PubMed]
    [Google Scholar]
  4. Blázquez J., Couce A., Rodríguez-Beltrán J., Rodríguez-Rojas A.. 2012; Antimicrobials as promoters of genetic variation. Curr Opin Microbiol15:561–569 [CrossRef][PubMed]
    [Google Scholar]
  5. Brazas M. D., Hancock R. E.. 2005; Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa . Antimicrob Agents Chemother49:3222–3227 [CrossRef][PubMed]
    [Google Scholar]
  6. Brazas M. D., Breidenstein E. B., Overhage J., Hancock R. E.. 2007; Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother51:4276–4283 [CrossRef][PubMed]
    [Google Scholar]
  7. Brochmann R. P., Toft A., Ciofu O., Briales A., Kolpen M., Hempel C., Bjarnsholt T., Høiby N., Jensen P. O.. 2014; Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int J Antimicrob Agents43:140–147 [CrossRef][PubMed]
    [Google Scholar]
  8. Ciofu O., Mandsberg L. F., Bjarnsholt T., Wassermann T., Høiby N.. 2010; Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology156:1108–1119 [CrossRef][PubMed]
    [Google Scholar]
  9. Cirz R. T., O'Neill B. M., Hammond J. A., Head S. R., Romesberg F. E.. 2006; Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol188:7101–7110 [CrossRef][PubMed]
    [Google Scholar]
  10. Dwyer D. J., Kohanski M. A., Collins J. J.. 2009; Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol12:482–489 [CrossRef][PubMed]
    [Google Scholar]
  11. Edgar R., Domrachev M., Lash A. E.. 2002; Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res30:207–210 [CrossRef][PubMed]
    [Google Scholar]
  12. Fàbrega A., Madurga S., Giralt E., Vila J.. 2009; Mechanism of action of and resistance to quinolones. Microb Biotechnol2:40–61 [CrossRef][PubMed]
    [Google Scholar]
  13. Gambello M. J., Iglewski B. H.. 1991; Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173:3000–3009[PubMed]
    [Google Scholar]
  14. Gocke E.. 1991; Mechanism of quinolone mutagenicity in bacteria. Mutat Res248:135–143 [CrossRef][PubMed]
    [Google Scholar]
  15. Gustafsson I., Sjölund M., Torell E., Johannesson M., Engstrand L., Cars O., Andersson D. I.. 2003; Bacteria with increased mutation frequency and antibiotic resistance are enriched in the commensal flora of patients with high antibiotic usage. J Antimicrob Chemother52:645–650 [CrossRef][PubMed]
    [Google Scholar]
  16. Ha D. G., Kuchma S. L., O'Toole G. A.. 2014; Plate-based assay for swimming motility in Pseudomonas aeruginosa . Methods Mol Biol1149:59–65 [CrossRef][PubMed]
    [Google Scholar]
  17. Hall B. M., Ma C. X., Liang P., Singh K. K.. 2009; Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics25:1564–1565 [CrossRef][PubMed]
    [Google Scholar]
  18. Hansen S. K., Rau M. H., Johansen H. K., Ciofu O., Jelsbak L., Yang L., Folkesson A., Jarmer H. O., Aanæs K., other authors. 2012; Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J6:31–45 [CrossRef][PubMed]
    [Google Scholar]
  19. Hassett D. J., Ma J. F., Elkins J. G., McDermott T. R., Ochsner U. A., West S. E., Huang C. T., Fredericks J., Burnett S., other authors. 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol34:1082–1093 [CrossRef][PubMed]
    [Google Scholar]
  20. Hauser A. R.. 2009; The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol7:654–665 [CrossRef][PubMed]
    [Google Scholar]
  21. Herrero M., de Lorenzo V., Timmis K. N.. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567[PubMed]
    [Google Scholar]
  22. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P.. 2000; Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid43:59–72 [CrossRef][PubMed]
    [Google Scholar]
  23. Høiby N., Jarløv J. O., Kemp M., Tvede M., Bangsborg J. M., Kjerulf A., Pers C., Hansen H.. 1997; Excretion of ciprofloxacin in sweat and multiresistant Staphylococcus epidermidis . Lancet349:167–169 [CrossRef][PubMed]
    [Google Scholar]
  24. Holloway B. W.. 1955; Genetic recombination in Pseudomonas aeruginosa . J Gen Microbiol13:572–581[PubMed]
    [Google Scholar]
  25. Hong C. S., Shitashiro M., Kuroda A., Ikeda T., Takiguchi N., Ohtake H., Kato J.. 2004; Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa . FEMS Microbiol Lett231:247–252 [CrossRef][PubMed]
    [Google Scholar]
  26. Hurley M., Smyth A.. 2012; Fluoroquinolones in the treatment of bronchopulmonary disease in cystic fibrosis. Ther Adv Respir Dis6:363–373 [CrossRef][PubMed]
    [Google Scholar]
  27. Jansen G., Crummenerl L. L., Gilbert F., Mohr T., Pfefferkorn R., Thänert R., Rosenstiel P., Schulenburg H.. 2015; Evolutionary transition from pathogenicity to commensalism: global regulator mutations mediate fitness gains through virulence attenuation. Mol Biol Evol32:2883–2896 [CrossRef][PubMed]
    [Google Scholar]
  28. Jørgensen K. M., Wassermann T., Jensen P. O., Hengzuang W., Molin S., Høiby N., Ciofu O.. 2013; Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa . Antimicrob Agents Chemother57:4215–4221 [CrossRef][PubMed]
    [Google Scholar]
  29. Jørgensen K. M., Wassermann T., Johansen H. K., Christiansen L. E., Molin S., Høiby N., Ciofu O.. 2015; Diversity of metabolic profiles of cystic fibrosis Pseudomonas aeruginosa during the early stages of lung infection. Microbiology161:1447–1462 [CrossRef][PubMed]
    [Google Scholar]
  30. Jyet J., Ramphal R.. 2008; Flagella and pili of Pseudomonas aeruginosa . In Pseudomonas: Model Organism, Pathogen and Cell Factory pp85–108 Edited by Rehm B. H. A.. Oxford: Wiley-Blackwell; [CrossRef]
    [Google Scholar]
  31. Kessler E., Safrin M.. 2014; Elastinolytic and proteolytic enzymes. Methods Mol Biol1149:135–169 [CrossRef][PubMed]
    [Google Scholar]
  32. Kohanski M. A., DePristo M. A., Collins J. J.. 2010; Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell37:311–320 [CrossRef][PubMed]
    [Google Scholar]
  33. Köhler T., Perron G. G., Buckling A., van Delden C.. 2010; Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa . PLoS Pathog6:e1000883 [CrossRef][PubMed]
    [Google Scholar]
  34. Linares J. F., Gustafsson I., Baquero F., Martinez J. L.. 2006; Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A103:19484–19489 [CrossRef][PubMed]
    [Google Scholar]
  35. Line L., Alhede M., Kolpen M., Kühl M., Ciofu O., Bjarnsholt T., Moser C., Toyofuku M., Nomura N., other authors. 2014; Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol5:554[PubMed][CrossRef]
    [Google Scholar]
  36. Mandsberg L. F., Ciofu O., Kirkby N., Christiansen L. E., Poulsen H. E., Høiby N.. 2009; Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother53:2483–2491 [CrossRef][PubMed]
    [Google Scholar]
  37. Markussen T., Marvig R. L., Gómez-Lozano M., Aanæs K., Burleigh A. E., Høiby N., Johansen H. K., Molin S., Jelsbak L.. 2014; Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa . MBio5:e01592–e01514 [CrossRef][PubMed]
    [Google Scholar]
  38. Masuda N., Gotoh N., Ishii C., Sakagawa E., Ohya S., Nishino T.. 1999; Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa . Antimicrob Agents Chemother43:400–402[PubMed]
    [Google Scholar]
  39. Morita Y., Kimura N., Mima T., Mizushima T., Tsuchiya T.. 2001; Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol47:27–32 [CrossRef][PubMed]
    [Google Scholar]
  40. Mulet X., Moyá B., Juan C., Macià M. D., Pérez J. L., Blázquez J., Oliver A.. 2011; Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth. Antimicrob Agents Chemother55:4560–4568 [CrossRef][PubMed]
    [Google Scholar]
  41. Nair C. G., Chao C., Ryall B., Williams H. D.. 2013; Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic fibrosis pathogen Pseudomonas aeruginosa . Lett Appl Microbiol56:149–154 [CrossRef][PubMed]
    [Google Scholar]
  42. Newman J. R., Fuqua C.. 1999; Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene227:197–203 [CrossRef][PubMed]
    [Google Scholar]
  43. Olivares J., Álvarez-Ortega C., Martinez J. L.. 2014; Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa . Antimicrob Agents Chemother58:3904–3913 [CrossRef][PubMed]
    [Google Scholar]
  44. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M.. 2005; Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol187:5267–5277 [CrossRef][PubMed]
    [Google Scholar]
  45. Poole K.. 2011; Pseudomonas aeruginosa: resistance to the max. Front Microbiol2:65[PubMed][CrossRef]
    [Google Scholar]
  46. Rainey P. B., Buckling A., Kassen R., Travisano M.. 2000; The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol15:243–247 [CrossRef][PubMed]
    [Google Scholar]
  47. Rakhimova E., Munder A., Wiehlmann L., Bredenbruch F., Tümmler B.. 2008; Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection. PLoS One3:e1685 [CrossRef][PubMed]
    [Google Scholar]
  48. Schuster M., Greenberg E. P.. 2006; A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol296:73–81 [CrossRef][PubMed]
    [Google Scholar]
  49. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M.. 2008; Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa . Antimicrob Agents Chemother52:3648–3663 [CrossRef][PubMed]
    [Google Scholar]
  50. Stephenson K., Hoch J. A.. 2002; Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol2:507–512 [CrossRef][PubMed]
    [Google Scholar]
  51. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H.. 1997; Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa . Microbiology143:3223–3229 [CrossRef][PubMed]
    [Google Scholar]
  52. Tanimoto K., Tomita H., Fujimoto S., Okuzumi K., Ike Y.. 2008; Fluoroquinolone enhances the mutation frequency for meropenem-selected carbapenem resistance in Pseudomonas aeruginosa, but use of the high-potency drug doripenem inhibits mutant formation. Antimicrob Agents Chemother52:3795–3800 [CrossRef][PubMed]
    [Google Scholar]
  53. Toder D. S., Gambello M. J., Iglewski B. H.. 1991; Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR . Mol Microbiol5:2003–2010 [CrossRef][PubMed]
    [Google Scholar]
  54. Torres-Barceló C., Kojadinovic M., Moxon R., MacLean R. C.. 2015; The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Proc Biol Sci282:20150885 [CrossRef][PubMed]
    [Google Scholar]
  55. Wong A., Kassen R.. 2011; Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa . Microbiology157:937–944 [CrossRef][PubMed]
    [Google Scholar]
  56. Wong A., Rodrigue N., Kassen R.. 2012; Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa . PLoS Genet8:e1002928 [CrossRef][PubMed]
    [Google Scholar]
  57. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000273
Loading
/content/journal/micro/10.1099/mic.0.000273
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error