1887

Abstract

In , uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene () reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double /-deletant strains are unable to produce new biomass from lactose. Although transcription of both genes was strongly induced by lactose, their inducer profiles differ markedly. but not expression was high in -galactose cultures. However, responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any response. Nevertheless, transcript was induced to higher levels on cellobiose in strains that lack the gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in deletants. In contrast, in knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in prominently involves hitherto unknown transport systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000267
2016-05-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/837.html?itemId=/content/journal/micro/10.1099/mic.0.000267&mimeType=html&fmt=ahah

References

  1. Aghcheh R. K., Kubicek C. P.. 2015; Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol99:6167–6181 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Anisimova M., Gascuel O.. 2006; Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol55:539–552 [CrossRef][PubMed]
    [Google Scholar]
  4. Baruffini E., Goffrini P., Donnini C., Lodi T.. 2006; Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res6:1235–1242 [CrossRef][PubMed]
    [Google Scholar]
  5. Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P.. 2013; Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels6:127 [CrossRef][PubMed]
    [Google Scholar]
  6. Cardinali G., Vollenbroich V., Jeon M. S., de Graaf A. A., Hollenberg C. P.. 1997; Constitutive expression in gal7 mutants of Kluyveromyces lactis is due to internal production of galactose as an inducer of the Gal/Lac regulon. Mol Cell Biol17:1722–1730 [CrossRef][PubMed]
    [Google Scholar]
  7. Cerqueira G. C., Arnaud M. B., Inglis D. O., Skrzypek M. S., Binkley G., Simison M., Miyasato S. R., Binkley J., Orvis J., other authors. 2014; The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res42:D705–D710 [CrossRef][PubMed]
    [Google Scholar]
  8. Chang Y.-D., Dickson R. C.. 1988; Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis. Presence of an unusual transcript structure. J Biol Chem263:16696–16703[PubMed]
    [Google Scholar]
  9. Clutterbuck A. J.. 1974; Aspergillus nidulans. In Handbook of Genetics, Bacteria, Bacteriophages, and Fungi vol. 1 pp447–510 Edited by King R. C.. New York: Plenum; [CrossRef]
    [Google Scholar]
  10. Coghill R. D., Moyer A. J.. 1947; Method for production of increased yields of penicillin. US Patent 2,423,873
  11. Criscuolo A., Gribaldo S.. 2010; BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol10:210 [CrossRef][PubMed]
    [Google Scholar]
  12. Diniz R. H. S., Silveira W. B., Fietto L. G., Passos F. M. L.. 2012; The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek101:541–550 [CrossRef][PubMed]
    [Google Scholar]
  13. Fekete E., Karaffa L., Sándor E., Seiboth B., Biró S., Szentirmai A., Kubicek C. P.. 2002; Regulation of formation of the intracellular β-galactosidase activity of Aspergillus nidulans . Arch Microbiol179:7–14 [CrossRef][PubMed]
    [Google Scholar]
  14. Fekete E., Karaffa L., Seiboth B., Fekete É., Kubicek C. P., Flipphi M.. 2012; Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans . Fungal Genet Biol49:415–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Galazka J. M., Tian C., Beeson W. T., Martinez B., Glass N. L., Cate J. H.. 2010; Cellodextrin transport in yeast for improved biofuel production. Science330:84–86 [CrossRef][PubMed]
    [Google Scholar]
  16. Gänzle M. G., Haase G., Jelen P.. 2008; Lactose: crystallization, hydrolysis and value-added derivatives. Int Dairy J18:685–694 [CrossRef]
    [Google Scholar]
  17. Gielkens M. M., Dekkers E., Visser J., de Graaff L. H.. 1999; Two cellobiohydrolase-encoding genes from Aspergillus niger require d-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol65:4340–4345[PubMed]
    [Google Scholar]
  18. Gödecke A., Zachariae W., Arvanitidis A., Breunig K. D.. 1991; Coregulation of the Kluyveromyces lactis lactose permease and β-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res19:5351–5358 [CrossRef][PubMed]
    [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  20. Ivanova C., Bååth J. A., Seiboth B., Kubicek C. P.. 2013; Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One8:e62631 [CrossRef][PubMed]
    [Google Scholar]
  21. Jónás Á., Fekete E., Flipphi M., Sándor E., Jäger S., Molnár Á.P., Szentirmai A., Karaffa L.. 2014; Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes. J Antibiot (Tokyo)67:489–497 [CrossRef][PubMed]
    [Google Scholar]
  22. Karaffa L., Coulier L., Fekete E., Overkamp K. M., Druzhinina I. S., Mikus M., Seiboth B., Novák L., Punt P. J., Kubicek C. P.. 2013; The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Appl Microbiol Biotechnol97:5447–5456 [CrossRef][PubMed]
    [Google Scholar]
  23. Karaffa L., Díaz R., Papp B., Fekete E., Sándor E., Kubicek C. P.. 2015; A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus . Appl Microbiol Biotechnol99:7937–7944 [CrossRef][PubMed]
    [Google Scholar]
  24. Katoh K., Toh H.. 2010; Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics26:1899–1900 [CrossRef][PubMed]
    [Google Scholar]
  25. Kumari S., Panesar P. S., Panesar R.. 2011; Production of β-galactosidase using novel yeast isolate from whey. Int J Dairy Sci6:150–157 [CrossRef]
    [Google Scholar]
  26. Lodi T., Donnini C.. 2005; Lactose-induced cell death of β-galactosidase mutants in Kluyveromyces lactis . FEMS Yeast Res5:727–734 [CrossRef][PubMed]
    [Google Scholar]
  27. Marwaha S. S., Kennedy J. F.. 1988; Whey – pollution problem and potential utilization. Int J Food Sci Technol23:323–336 [CrossRef]
    [Google Scholar]
  28. Michalak M., Thomassen l. V., Roytio H., Ouwehand A. C., Meyer A. S., Mikkelsen J. D.. 2012; Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme Microb Technol50:121–129[CrossRef]
    [Google Scholar]
  29. Mustapha A., Jiang T., Savaiano D. A.. 1997; Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus . J Dairy Sci80:1537–1545 [CrossRef][PubMed]
    [Google Scholar]
  30. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R.. 2006; A versatile and efficient gene-targeting system for Aspergillus nidulans . Genetics172:1557–1566 [CrossRef][PubMed]
    [Google Scholar]
  31. Nevalainen K. M. H.. 1981; Induction, isolation, and characterization of Aspergillus niger mutant strains producing elevated levels of β-galactosidase. Appl Environ Microbiol41:593–596[PubMed]
    [Google Scholar]
  32. O'Connell S., Walsh G.. 2010; A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Appl Microbiol Biotechnol86:517–524 [CrossRef][PubMed]
    [Google Scholar]
  33. Otten H., Michalak M., Mikkelsen J. D., Larsen S.. 2013; The binding of zinc ions to Emericella nidulans endo-β-1,4-galactanase is essential for crystal formation. Acta CrystF69:850–854
    [Google Scholar]
  34. Panesar P. S., Kennedy J. F.. 2012; Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol32:327–348 [CrossRef][PubMed]
    [Google Scholar]
  35. Panesar P. S., Panesar R., Singh R. S., Kennedy J. F., Kumar H.. 2006; Microbial production, immobilization and applications of β-d-galactosidase. J Chem Technol Biotechnol81:530–543 [CrossRef]
    [Google Scholar]
  36. Rigamonte T. A., Silveira W. B., Fietto L. G., Castro I. M., Breunig K. D., Passos F. M. L.. 2011; Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Res11:243–251 [CrossRef][PubMed]
    [Google Scholar]
  37. Riley M. I., Sreekrishna K., Bhairi S., Dickson R. C.. 1987; Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol Gen Genet208:145–151 [CrossRef][PubMed]
    [Google Scholar]
  38. Roelfsema W. A., Kuster B. F. M., Heslinga M. C., Pluim H., Verhage M.. 2010; Lactose and Derivatives. Ullmann's Encyclopedia of Industrial Chemistry, 7th edn. New York: Wiley;
    [Google Scholar]
  39. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Seiboth B., Pakdaman B. S., Hartl L., Kubicek C. P.. 2007; Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol Rev21:42–48 [CrossRef]
    [Google Scholar]
  41. Silva M. F., Fornari R. C. G., Mazutti M. A., de Oliveira D., Padilha F. F., Cichoski A. J., Cansian R. L., Di Luccio M., Treichel H.. 2009; Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng90:119–123 [CrossRef]
    [Google Scholar]
  42. Sternberg D., Mandels G. R.. 1980; Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of β-glucosidase. J Bacteriol144:1197–1199[PubMed]
    [Google Scholar]
  43. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W.. 1983; Transformation by integration in Aspergillus nidulans . Gene26:205–221 [CrossRef][PubMed]
    [Google Scholar]
  44. Wortman J. R., Gilsenan J. M., Joardar V., Deegan J., Clutterbuck J., Andersen M. R., Archer D., Bencina M., Braus G., other authors. 2009; The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol46:(Suppl. 1)S2–S13 [CrossRef][PubMed]
    [Google Scholar]
  45. Wucherpfennig T., Hestler T., Krull R.. 2011; Morphology engineering–osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact10:58 [CrossRef][PubMed]
    [Google Scholar]
  46. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C.. 2004; Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol41:973–981 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang W., Kou Y., Xu J., Cao Y., Zhao G., Shao J., Wang H., Wang Z., Bao X., other authors. 2013; Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem288:32861–32872 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000267
Loading
/content/journal/micro/10.1099/mic.0.000267
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error