1887

Abstract

Coevolution between bacteriophages (phages) and their prey is the result of mutualistic interactions. Here, we show that pseudolysogeny is a frequent outcome of infection by virulent phages of and that selection of resistant bacterial mutants is favoured by continuous production of phages. We investigated the frequency and characteristics of strain PAO1 variants resisting infection by different combinations of virulent phages belonging to four genera. The frequency of resistant bacteria was 10 for single phage infection and 10 for infections with combinations of two or four phages. The genome of 27 variants was sequenced and the comparison with the genome of the parental PAO1 strain allowed the identification of point mutations or small indels. Four additional variants were characterized by a candidate gene approach. In total, 27 independent mutations were observed affecting 14 genes and a regulatory region. The mutations affected genes involved in biosynthesis of type IV pilus, alginate, LPS and O-antigen. Half of the variants possessed changes in homopolymer tracts responsible for frameshift mutations and these phase variation mutants were shown to be unstable. Eleven double mutants were detected. The presence of free phage DNA was observed in association with exclusion of superinfection in half of the variants and no chromosomal mutation could be found in three of them. Upon further growth of these pseudolysogens, some variants with new chromosomal mutations were recovered, presumably due to continuous evolutionary pressure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000263
2016-05-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/748.html?itemId=/content/journal/micro/10.1099/mic.0.000263&mimeType=html&fmt=ahah

References

  1. Abedon S. T., Kuhl S. J., Blasdel B. G., Kutter E. M.. 2011; Phage treatment of human infections. Bacteriophage1:66–85 [CrossRef][PubMed]
    [Google Scholar]
  2. Augustin D. K., Song Y., Baek M. S., Sawa Y., Singh G., Taylor B., Rubio-Mills A., Flanagan J. L., Wiener-Kronish J. P., Lynch S. V.. 2007; Presence or absence of lipopolysaccharide O antigens affects type III secretion by Pseudomonas aeruginosa. J Bacteriol189:2203–2209 [CrossRef][PubMed]
    [Google Scholar]
  3. Baess I.. 1971; Report on a pseudolysogenic mycobacterium and a review of the literature concerning pseudolysogeny. Acta Pathol Microbiol Scand B Microbiol Immunol79:428–434[PubMed]
    [Google Scholar]
  4. Betts A., Kaltz O., Hochberg M. E.. 2014; Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc Natl Acad Sci U S A111:11109–11114 [CrossRef][PubMed]
    [Google Scholar]
  5. Bode W.. 1967; Lysis inhibition in Escherichia coli infected with bacteriophage T4. J Virol1:948–955[PubMed]
    [Google Scholar]
  6. Brockhurst M. A., Buckling A., Rainey P. B.. 2005; The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa. Proc Biol Sci272:1385–1391 [CrossRef][PubMed]
    [Google Scholar]
  7. Bucior I., Pielage J. F., Engel J. N.. 2012; Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog8:e1002616 [CrossRef][PubMed]
    [Google Scholar]
  8. Buckling A., Rainey P. B.. 2002; Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci269:931–936 [CrossRef][PubMed]
    [Google Scholar]
  9. Ceyssens P. J., Glonti T., Kropinski N. M., Lavigne R., Chanishvili N., Kulakov L., Lashkhi N., Tediashvili M., Merabishvili M.. 2011; Phenotypic and genotypic variations within a single bacteriophage species. Virol J8:134 [CrossRef][PubMed]
    [Google Scholar]
  10. Chaturongakul S., Ounjai P.. 2014; Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol5:442 [CrossRef][PubMed]
    [Google Scholar]
  11. Chiang P., Burrows L. L.. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol185:2374–2378 [CrossRef][PubMed]
    [Google Scholar]
  12. Chibeu A., Ceyssens P. J., Hertveldt K., Volckaert G., Cornelis P., Matthijs S., Lavigne R.. 2009; The adsorption of Pseudomonas aeruginosa bacteriophage ϕKMV is dependent on expression regulation of type IV pili genes. FEMS Microbiol Lett296:210–218 [CrossRef][PubMed]
    [Google Scholar]
  13. Choi K. H., Kumar A., Schweizer H. P.. 2006; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  14. Church G. M., Gilbert W.. 1984; Genomic sequencing. Proc Natl Acad Sci U S A81:1991–1995 [CrossRef][PubMed]
    [Google Scholar]
  15. de Siqueira R. S., Dodd C. E., Rees C. E.. 2006; Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int J Food Microbiol111:259–262 [CrossRef][PubMed]
    [Google Scholar]
  16. Demerec M., Fano U.. 1945; Bacteriophage-resistant mutants in Escherichia coli. Genetics30:119–136[PubMed]
    [Google Scholar]
  17. Dennehy J. J.. 2012; What can phages tell us about host-pathogen coevolution?. Int J Evol Biol2012:396165 [CrossRef][PubMed]
    [Google Scholar]
  18. Essoh C., Blouin Y., Loukou G., Cablanmian A., Lathro S., Kutter E., Thien H. V., Vergnaud G., Pourcel C.. 2013; The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS One8:e60575 [CrossRef][PubMed]
    [Google Scholar]
  19. Essoh C., Latino L., Midoux C., Blouin Y., Loukou G., Nguetta S. P., Lathro S., Cablanmian A., Kouassi A. K., other authors. 2015; Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d'Ivoire. PLoS One10:e0130548 [CrossRef][PubMed]
    [Google Scholar]
  20. Fomsgaard A., Freudenberg M. A., Galanos C.. 1990; Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol28:2627–2631[PubMed]
    [Google Scholar]
  21. Hahn H. P.. 1997; The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene192:99–108 [CrossRef][PubMed]
    [Google Scholar]
  22. Hansen S. K., Haagensen J. A., Gjermansen M., Jørgensen T. M., Tolker-Nielsen T., Molin S.. 2007; Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J Bacteriol189:4932–4943 [CrossRef][PubMed]
    [Google Scholar]
  23. Henderson I. R., Owen P., Nataro J. P.. 1999; Molecular switches – the ON and OFF of bacterial phase variation. Mol Microbiol33:919–932 [CrossRef][PubMed]
    [Google Scholar]
  24. Hitchcock P. J., Brown T. M.. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277[PubMed]
    [Google Scholar]
  25. Hosseinidoust Z., Tufenkji N., van de Ven T. G.. 2013a; Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Appl Environ Microbiol79:2862–2871 [CrossRef][PubMed]
    [Google Scholar]
  26. Hosseinidoust Z., van de Ven T. G., Tufenkji N.. 2013b; Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl Environ Microbiol79:6110–6116 [CrossRef][PubMed]
    [Google Scholar]
  27. Hyman P., Abedon S. T.. 2010; Bacteriophage host range and bacterial resistance. Adv Appl Microbiol70:217–248 [CrossRef][PubMed]
    [Google Scholar]
  28. Islam S. T., Lam J. S.. 2014; Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol60:697–716 [CrossRef][PubMed]
    [Google Scholar]
  29. Islam S. T., Huszczynski S. M., Nugent T., Gold A. C., Lam J. S.. 2013; Conserved-residue mutations in Wzy affect O-antigen polymerization and Wzz-mediated chain-length regulation in Pseudomonas aeruginosa PAO1. Sci Rep3:3441 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim K., Oh J., Han D., Kim E. E., Lee B., Kim Y.. 2006; Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem Biophys Res Commun340:1028–1038 [CrossRef][PubMed]
    [Google Scholar]
  31. King J. D., Kocíncová D., Westman E. L., Lam J. S.. 2009; Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun15:261–312 [CrossRef][PubMed]
    [Google Scholar]
  32. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol48:1511–1524 [CrossRef][PubMed]
    [Google Scholar]
  33. Klockgether J., Munder A., Neugebauer J., Davenport C. F., Stanke F., Larbig K. D., Heeb S., Schöck U., Pohl T. M., other authors. 2010; Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol192:1113–1121 [CrossRef][PubMed]
    [Google Scholar]
  34. Labrie S. J., Samson J. E., Moineau S.. 2010; Bacteriophage resistance mechanisms. Nat Rev Microbiol8:317–327 [CrossRef][PubMed]
    [Google Scholar]
  35. Lam J. S., Taylor V. L., Islam S. T., Hao Y., Kocíncová D.. 2011; Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol2:118 [CrossRef][PubMed]
    [Google Scholar]
  36. Latino L., Essoh C., Blouin Y., Vu Thien H., Pourcel C.. 2014; A novel Pseudomonas aeruginosa bacteriophage, Ab31, a chimera formed from temperate phage PAJU2 and P. putida lytic phage AF: characteristics and mechanism of bacterial resistance. PLoS One9:e93777 [CrossRef][PubMed]
    [Google Scholar]
  37. Le S., Yao X., Lu S., Tan Y., Rao X., Li M., Jin X., Wang J., Zhao Y., other authors. 2014; Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci Rep4:4738 [CrossRef][PubMed]
    [Google Scholar]
  38. León M., Bastías R.. 2015; Virulence reduction in bacteriophage resistant bacteria. Front Microbiol6:343 [CrossRef][PubMed]
    [Google Scholar]
  39. Liebens V., Defraine V., Van der Leyden A., De Groote V. N., Fierro C., Beullens S., Verstraeten N., Kint C., Jans A., other authors. 2014; A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis71:39–54 [CrossRef][PubMed]
    [Google Scholar]
  40. Loś M., Węgrzyn G.. 2012; Pseudolysogeny. Adv Virus Res82:339–349 [CrossRef][PubMed]
    [Google Scholar]
  41. Loś M., Węgrzyn G., Neubauer P.. 2003; A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Res Microbiol154:547–552 [CrossRef][PubMed]
    [Google Scholar]
  42. Lu M. J., Henning U.. 1989; The immunity (imm) gene of Escherichia coli bacteriophage T4. J Virol63:3472–3478[PubMed]
    [Google Scholar]
  43. Lyczak J. B., Cannon C. L., Pier G. B.. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect2:1051–1060 [CrossRef][PubMed]
    [Google Scholar]
  44. Maillou J., Dreiseikelmann B.. 1990; The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology175:500–507 [CrossRef][PubMed]
    [Google Scholar]
  45. Maura D., Debarbieux L.. 2012; On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage2:229–233 [CrossRef][PubMed]
    [Google Scholar]
  46. Maura D., Galtier M., Le Bouguénec C., Debarbieux L.. 2012; Virulent bacteriophages can target O104 : H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother56:6235–6242 [CrossRef][PubMed]
    [Google Scholar]
  47. Murphy K., Park A. J., Hao Y., Brewer D., Lam J. S., Khursigara C. M.. 2014; Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol196:1306–1317 [CrossRef][PubMed]
    [Google Scholar]
  48. O'Toole G. A., Kolter R.. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  49. Olszak T., Zarnowiec P., Kaca W., Danis-Wlodarczyk K., Augustyniak D., Drevinek P., de Soyza A., McClean S., Drulis-Kawa Z.. 2015; In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl Microbiol Biotechnol99:6021–6033 [CrossRef][PubMed]
    [Google Scholar]
  50. Olvera C., Goldberg J. B., Sánchez R., Soberón-Chávez G.. 1999; The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett179:85–90 [CrossRef][PubMed]
    [Google Scholar]
  51. Poon K. K., Westman E. L., Vinogradov E., Jin S., Lam J. S.. 2008; Functional characterization of MigA and WapR: putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J Bacteriol190:1857–1865 [CrossRef][PubMed]
    [Google Scholar]
  52. Pritt B., O'Brien L., Winn W.. 2007; Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol128:32–34 [CrossRef][PubMed]
    [Google Scholar]
  53. Pulcrano G., Iula D. V., Raia V., Rossano F., Catania M. R.. 2012; Different mutations in mucA gene of Pseudomonas aeruginosa mucoid strains in cystic fibrosis patients and their effect on algU gene expression. New Microbiol35:295–305[PubMed]
    [Google Scholar]
  54. Ripp S., Miller R. V.. 1997; The role of pseudolysogeny in bacteriophage–host interactions in a natural freshwater environment. Virology143:2065–2070
    [Google Scholar]
  55. Ripp S., Miller R. V.. 1998; Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology144:2225–2232 [CrossRef][PubMed]
    [Google Scholar]
  56. Rocchetta H. L., Burrows L. L., Lam J. S.. 1999; Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev63:523–553[PubMed]
    [Google Scholar]
  57. Scanlan P. D., Hall A. R., Blackshields G., Friman V. P., Davis M. R. Jr, Goldberg J. B., Buckling A.. 2015; Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol32:1425–1435 [CrossRef][PubMed]
    [Google Scholar]
  58. Segura A., Hurtado A., Duque E., Ramos J. L.. 2004; Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol186:1905–1909 [CrossRef][PubMed]
    [Google Scholar]
  59. Siringan P., Connerton P. L., Cummings N. J., Connerton I. F.. 2014; Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biol4:130200 [CrossRef][PubMed]
    [Google Scholar]
  60. Sistrom M., Park D., O'Brien H. E., Wang Z., Guttman D. S., Townsend J. P., Turner P. E.. 2015; Genomic and gene-expression comparisons among phage-resistant type-IV pilus mutants of Pseudomonas syringae pathovar phaseolicola. PLoS One10:e0144514 [CrossRef][PubMed]
    [Google Scholar]
  61. Spencer D. H., Kas A., Smith E. E., Raymond C. K., Sims E. H., Hastings M., Burns J. L., Kaul R., Olson M. V.. 2003; Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol185:1316–1325 [CrossRef][PubMed]
    [Google Scholar]
  62. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J., other authors. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  63. Tanji Y., Hattori K., Suzuki K., Miyanaga K.. 2008; Spontaneous deletion of a 209-kilobase-pair fragment from the Escherichia coli genome occurs with acquisition of resistance to an assortment of infectious phages. Appl Environ Microbiol74:4256–4263 [CrossRef][PubMed]
    [Google Scholar]
  64. Taylor V. L., Udaskin M. L., Islam S. T., Lam J. S.. 2013; The D3 bacteriophage α-polymerase inhibitor (Iap) peptide disrupts O-antigen biosynthesis through mimicry of the chain length regulator Wzz in Pseudomonas aeruginosa. J Bacteriol195:4735–4741 [CrossRef][PubMed]
    [Google Scholar]
  65. Vu-Thien H., Corbineau G., Hormigos K., Fauroux B., Corvol H., Clément A., Vergnaud G., Pourcel C.. 2007; Multiple-locus variable-number tandem-repeat analysis for longitudinal survey of sources of Pseudomonas aeruginosa infection in cystic fibrosis patients. J Clin Microbiol45:3175–3183 [CrossRef][PubMed]
    [Google Scholar]
  66. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. 1994; Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene148:81–86 [CrossRef][PubMed]
    [Google Scholar]
  67. Williams H. T.. 2013; Phage-induced diversification improves host evolvability. BMC Evol Biol13:17 [CrossRef][PubMed]
    [Google Scholar]
  68. Wommack K. E., Colwell R. R.. 2000; Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev64:69–114 [CrossRef][PubMed]
    [Google Scholar]
  69. Zierdt C. H., Schmidt P. J.. 1964; Dissociation in Pseudomonas aeruginosa. J Bacteriol87:1003–1010[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000263
Loading
/content/journal/micro/10.1099/mic.0.000263
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error