1887

Abstract

Aquatic hyphomycetes are the major microbial decomposers of plant litter in streams. We selected three aquatic hyphomycete species with different abilities to tolerate, adsorb and accumulate copper and zinc, and we investigated the effects of these metals on H-ATPase activity as well as on the levels of thiol (SH)-containing compounds. Before metal exposure, the species isolated from a metal-polluted stream ( and ) had higher levels of thiol compounds than the species isolated from a clean stream (). However, rapidly increased the levels of thiols after metal exposure, emphasizing the importance of these compounds in fungal survival under metal stress. The highest amounts of metals adsorbed to fungal mycelia were found in the most tolerant species to each metal, i.e. in exposed to copper and in exposed to zinc. Short-term (10 min) exposure to copper completely inhibited the activity of H-ATPase of and whilst zinc only led to a similar effect on . However, at longer exposure times (8 days) the most metal-tolerant species exhibited increased H-ATPase activities, suggesting that the plasma membrane proton pump may be involved in the acclimation of aquatic hyphomycetes to metals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000262
2016-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/740.html?itemId=/content/journal/micro/10.1099/mic.0.000262&mimeType=html&fmt=ahah

References

  1. Ambesi A. , Miranda M. , Petrov V. V. , Slayman C. W. . ( 2000;). Biogenesis and function of the yeast plasma-membrane H+-ATPase. J Exp Biol 203: 155–160 [PubMed].
    [Google Scholar]
  2. Azevedo M. M. , Cássio F. . ( 2010;). Effects of metals on growth and sporulation of aquatic fungi. Drug Chem Toxicol 33: 269–278 [CrossRef] [PubMed].
    [Google Scholar]
  3. Azevedo M. M. , Almeida B. , Ludovico P. , Cássio F. . ( 2009;). Metal stress induces programmed cell death in aquatic fungi. Aquat Toxicol 92: 264–270.[CrossRef]
    [Google Scholar]
  4. Azevedo M. M. , Carvalho A. , Pascoal C. , Rodrigues F. , Cássio F. . ( 2007;). Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Sci Total Environ 377: 233–243 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bai Z. , Harvey L. M. , McNeil B. . ( 2003;). Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23: 267–302 [CrossRef] [PubMed].
    [Google Scholar]
  6. Baldy V. , Chauvet E. , Charcosset J.-Y. , Gessner M. O. . ( 2002;). Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28: 25–36 [CrossRef].
    [Google Scholar]
  7. Braha B. , Tintemann H. , Krauss G. , Ehrman J. , Bärlocher F. , Krauss G.-J. . ( 2007;). Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. Biometals 20: 93–105 [CrossRef] [PubMed].
    [Google Scholar]
  8. Burzynski M. , Kolano E. . ( 2003;). In vivo and in vitro effects of copper and cadmium on the plasma membrane H+-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots. Acta Physiol Plant 25: 39–45 [CrossRef].
    [Google Scholar]
  9. Cobbett C. , Goldsbrough P. . ( 2002;). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159–182 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dietz K. J. , Bair M. , Krämer U. . ( 1999;). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. . In Heavy Metal Stress in Plants: from Molecules to Ecosystems, pp. 73–97. Edited by Prasad M. N. V. , Hagemeyer J. . Berlin: Springer;.[CrossRef]
    [Google Scholar]
  11. Fernandes A. R. , Peixoto F. P. , Sá-Correia I. . ( 1998;). Activation of the H+-ATPase in the plasma membrane of cells of Saccharomyces cerevisiae grown under mild copper stress. Arch Microbiol 171: 6–12 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fernandes I. , Pascoal C. , Cássio F. . ( 2011;). Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 166: 1019–1028 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gadd G. M. . ( 1993;). Interactions of fungi with toxic metals. New Phytol 124: 25–60 [CrossRef].
    [Google Scholar]
  14. Gadd G. M. , White C. . ( 1985;). Copper uptake by Penicillium ochro-chloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J Gen Microbiol 131: 1875–1879.
    [Google Scholar]
  15. Gardea-Torresdey J. L. , Cano-Aguilera I. , Webb R. , Gutiérrez-Corona F. . ( 1997;). Enhanced copper adsorption and morphological alterations of cells of copper-stressed Mucor rouxii . Environ Toxicol Chem 16: 435–441 [CrossRef].
    [Google Scholar]
  16. Guimarães-Soares L. , Felícia H. , Bebianno M. J. , Cássio F. . ( 2006;). Metal-binding proteins and peptides in aquatic fungi exposed to severe metal stress. Sci Total Environ 372: 148–156 [CrossRef] [PubMed].
    [Google Scholar]
  17. Guimarães-Soares L. , Pascoal C. , Cássio F. . ( 2007;). Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta . Ecotoxicol Environ Saf 66: 36–43 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holyoak C. D. , Stratford M. , McMullin Z. , Cole M. B. , Crimmins K. , Brown A. J. , Coote P. J. . ( 1996;). Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62: 3158–3164 [PubMed].
    [Google Scholar]
  19. Howlett N. G. , Avery S. V. . ( 1997;). Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63: 2971–2976 [PubMed].
    [Google Scholar]
  20. Jaeckel P. , Krauss G. , Menge S. , Schierhorn A. , Rücknagel P. , Krauss G.-J. . ( 2005;). Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun 333: 150–155 [CrossRef] [PubMed].
    [Google Scholar]
  21. Janicka-Russak M. , Kabała K. , Burzyński M. , Kłobus G . ( 2008;). Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59: 3721–3728 [CrossRef] [PubMed].
    [Google Scholar]
  22. Karamushka V. I. , Gadd G. M. . ( 1994;). Influence of copper on proton efflux from Saccharomyces cerevisiae and the protective effect of calcium and magnesium. FEMS Microbiol Lett 122: 33–38 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kennedy C. D. , Gonsalves F. A. N. . ( 1987;). The action of divalent zinc, cadmium, mercury, copper and lead ions on the trans-root potential and H+ efflux of excised roots. J Exp Bot 38: 800–817 [CrossRef].
    [Google Scholar]
  24. Kneer R. , Kutchan T. M. , Hochberger A. , Zenk M. H. . ( 1992;). Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157: 305–310 [CrossRef] [PubMed].
    [Google Scholar]
  25. Krauss G.-J. , Solé M. , Krauss G. , Schlosser D. , Wesenberg D. , Bärlocher F. . ( 2011;). Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35: 620–651 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lo W. , Chua H. , Lam K. H. , Bi S. P. . ( 1999;). A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723–2736 [CrossRef] [PubMed].
    [Google Scholar]
  27. Miersch J. , Bärlocher F. , Bruns I. . ( 1997;). Effects of cadmium, copper, and zinc on growth and thiol content of aquatic hyphomycetes. Hydrobiologia 346: 77–84 [CrossRef].
    [Google Scholar]
  28. Miersch J. , Tschimedbalshir M. , Bärlocher F. , Grams Y. , Pierau B. , Schierhorn A. , Krauss G.-J. . ( 2001;). Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia . Mycol Res 105: 883–889 [CrossRef].
    [Google Scholar]
  29. Ohsumi Y. , Kitamoto K. , Anraku Y. . ( 1988;). Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol 170: 2676–2682 [PubMed].
    [Google Scholar]
  30. Pascoal C. , Cássio F. . ( 2004;). Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70: 5266–5273 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pascoal C. , Cássio F. , Marvanová L. . ( 2005a;). Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low order stream. Arch Hydrobiol 162: 481–496 [CrossRef].
    [Google Scholar]
  32. Pascoal C. , Marvanová L. , Cássio F. . ( 2005b;). Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 19: 109–128.
    [Google Scholar]
  33. Piper P. W. . ( 1993;). Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae . FEMS Microbiol Rev 11: 339–355 [CrossRef] [PubMed].
    [Google Scholar]
  34. Portillo F. . ( 2000;). Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469: 31–42 [CrossRef] [PubMed].
    [Google Scholar]
  35. Pradhan A. , Seena S. , Schlosser D. , Gerth K. , Helm S. , Dobritzsch M. , Krauss G.-J. , Dobritzsch D. , Pascoal C. , Cássio F. . ( 2015;). Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Environ Toxicol Chem 34: 923–930 [CrossRef] [PubMed].
    [Google Scholar]
  36. Rosa M. F. , Sá-Correia I. . ( 1992;). Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae . Enzyme Microbial Technol 14: 23–27 [CrossRef].
    [Google Scholar]
  37. Ross I. S. . ( 1994;). Uptake of zinc by fungi. . In Metal Ions in Fungi, pp. 237–257. Edited by Winkelmann G. , Winge D. R. . New York, NY: Marcel Dekker;.
    [Google Scholar]
  38. Sedlak J. , Lindsay R. H. . ( 1968;). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25: 192–205 [CrossRef] [PubMed].
    [Google Scholar]
  39. Serrano R. . ( 1988;). Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947: 1–28 [CrossRef] [PubMed].
    [Google Scholar]
  40. Soares H.M.V.M. , Boaventura R. A. R. , Machado A.A.S.C. , Esteves da Silva J. C. G. . ( 1999;). Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105: 311–323 [CrossRef] [PubMed].
    [Google Scholar]
  41. Spry D. J. , Wiener J. G. . ( 1991;). Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environ Pollut 71: 243–304 [CrossRef] [PubMed].
    [Google Scholar]
  42. Sridhar K. , Bärlocher F. , Krauss G.-J. , Krauss G. . ( 2005;). Response of aquatic hyphomycete communities to changes in heavy metal exposure. Int Rev Hydrobiol 90: 21–32 [CrossRef].
    [Google Scholar]
  43. Stadler N. , Váchová L. , Krasowska A. , Höfer M. , Sigler K. . ( 2003;). Role of strategic cysteine residues in oxidative damage to the yeast plasma membrane H+-ATPase caused by Fe- and Cu-containing Fenton reagents. Folia Microbiol (Praha) 48: 589–596 [CrossRef] [PubMed].
    [Google Scholar]
  44. Stark G. . ( 2005;). Functional consequences of oxidative membrane damage. J Membr Biol 205: 1–16 [CrossRef] [PubMed].
    [Google Scholar]
  45. Stohs S. J. , Bagchi D. . ( 1995;). Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18: 321–336 [CrossRef] [PubMed].
    [Google Scholar]
  46. Tallineau C. , Barriere M. , Boulard M. , Boulard-Heitzmann P. , Pontcharraud R. , Reiss D. , Guillard O. . ( 1984;). Evidence for the involvement of (Cu-ATP)2 −  in the inhibition of human erythrocyte (Ca2++ Mg2+)-ATPase by copper. Biochim Biophys Acta 775: 51–56 [CrossRef] [PubMed].
    [Google Scholar]
  47. van Uden N. . ( 1967;). Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition. Arch Mikrobiol 58: 155–168 [CrossRef] [PubMed].
    [Google Scholar]
  48. Viegas C. A. , Almeida P. F. , Cavaco M. , Sá-Correia I. . ( 1998;). The H+-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol 64: 779–783 [PubMed].
    [Google Scholar]
  49. Wardlaw A. C. . ( 1985;). Practical Statistics for Experimental Biologists New York, NY: Wiley;.
    [Google Scholar]
  50. Yang Y. L. , Zhang F. , He W. L. , Wang X. M. , Zhang L. X. . ( 2003;). Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots. Cell Mol Life Sci 60: 1249–1257 [PubMed].
    [Google Scholar]
  51. Zar J. H. . ( 2010;). Biostatistical Analysis , 5th edn. Englewood Cliffs, NJ: Prentice-Hall;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000262
Loading
/content/journal/micro/10.1099/mic.0.000262
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error