1887

Abstract

Pyridoxal 5′-phosphate (PLP) is an essential cofactor for nearly 60 enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the COG0325 () mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The mutant accumulates the PLP precursor pyridoxine 5′-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000255
2016-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/694.html?itemId=/content/journal/micro/10.1099/mic.0.000255&mimeType=html&fmt=ahah

References

  1. Albin R. L., Albers J. W., Greenberg H. S., Townsend J. B., Lynn R. B., Burke J.M., Jr., Alessi A. G.. ( 1987;). Acute sensory neuropathy-neuronopathy from pyridoxine overdose. Neurology 37: 1729–1732 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. ( 2000;). The Protein Data Bank. Nucleic Acids Res 28: 235–242 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chen H., Xiong L.. ( 2005;). Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J 44: 396–408 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chen F., Mackey A. J., Stoeckert C.J., Jr., Roos D. S.. ( 2006;). OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34: D363–D368 [CrossRef] [PubMed].
    [Google Scholar]
  6. Christen P., Mehta P. K.. ( 2001;). From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Chem Rec 1: 436–447 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clayton P. T.. ( 2006;). B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29: 317–326 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cohen S. S.. ( 1998;). A Guide to the Polyamines New York: Oxford University Press;.
    [Google Scholar]
  9. Corpet F.. ( 1988;). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881–10890 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dailey H. A., Gerdes S., Dailey T. A., Burch J. S., Phillips J. D.. ( 2015;). Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci U S A 112: 2210–2215 [CrossRef] [PubMed].
    [Google Scholar]
  11. De Wergifosse P., Jacques B., Jonniaux J. L., Purnelle B., Skala J., Goffeau A.. ( 1994;). The sequence of a 22.4 kb DNA fragment from the left arm of yeast chromosome II reveals homologues to bacterial proline synthetase and murine alpha-adaptin, as well as a new permease and a DNA-binding protein. Yeast 10: 1489–1496 [CrossRef] [PubMed].
    [Google Scholar]
  12. di Salvo M. L., Contestabile R., Safo M. K.. ( 2011;). Vitamin B(6) salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta 1814: 1597–1608 [CrossRef] [PubMed].
    [Google Scholar]
  13. di Salvo M. L., Safo M. K., Contestabile R.. ( 2012;). Biomedical aspects of pyridoxal 5′-phosphate availability. Front Biosci (Elite Ed) 4: 897–913 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dong Q., Fromm H. J.. ( 1990;). Chemical modification of adenylosuccinate synthetase from Escherichia coli by pyridoxal 5′-phosphate. Identification of an active site lysyl residue. J Biol Chem 265: 6235–6240 [PubMed].
    [Google Scholar]
  15. Downs D. M., Ernst D. C.. ( 2015;). From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol Microbiol 96: 211–219 [CrossRef] [PubMed].
    [Google Scholar]
  16. Emanuelsson O., Brunak S., von Heijne G., Nielsen H.. ( 2007;). Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–971 [CrossRef] [PubMed].
    [Google Scholar]
  17. Ericsson U. B., Hallberg B. M., Detitta G. T., Dekker N., Nordlund P.. ( 2006;). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  18. Eswaramoorthy S., Gerchman S., Graziano V., Kycia H., Studier F. W., Swaminathan S.. ( 2003;). Structure of a yeast hypothetical protein selected by a structural genomics approach. Acta Crystallogr D Biol Crystallogr 59: 127–135 [CrossRef] [PubMed].
    [Google Scholar]
  19. Farrant R. D., Walker V., Mills G. A., Mellor J. M., Langley G. J.. ( 2001;). Pyridoxal phosphate de-activation by pyrroline-5-carboxylic acid. Increased risk of vitamin B6 deficiency and seizures in hyperprolinemia type II. J Biol Chem 276: 15107–15116 [CrossRef] [PubMed].
    [Google Scholar]
  20. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L., other authors. ( 2014;). Pfam: the protein families database. Nucleic Acids Res 42: (D1), D222–D230 [CrossRef] [PubMed].
    [Google Scholar]
  21. Fitzpatrick T. B., Amrhein N., Kappes B., Macheroux P., Tews I., Raschle T.. ( 2007;). Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 407: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  22. Fitzpatrick T. B., Moccand C., Roux C.. ( 2010;). Vitamin B6 biosynthesis: charting the mechanistic landscape. ChemBioChem 11: 1185–1193 [CrossRef] [PubMed].
    [Google Scholar]
  23. Gerlt J. A., Bouvier J. T., Davidson D. B., Imker H. J., Sadkhin B., Slater D. R., Whalen K. L.. ( 2015;). Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophys Acta 1854: 1019–1037 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ghatge M. S., Contestabile R., di Salvo M. L., Desai J. V., Gandhi A. K., Camara C. M., Florio R., González I. N., Parroni A., other authors. ( 2012;). Pyridoxal 5′-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One 7: e41680 [CrossRef] [PubMed].
    [Google Scholar]
  25. Green J. C., Nichols B. P., Matthews R. G.. ( 1996;). Folate biosynthesis, reduction, and polyglutamylation. . In Escherichia coli and Salmonella, Cellular and Molecular Biology, pp. 665–673. Edited by Neidhart F. C.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  26. Grogan D. W.. ( 1988;). Temperature-sensitive murein synthesis in an Escherichia coli pdx mutant and the role of alanine racemase. Arch Microbiol 150: 363–367 [CrossRef] [PubMed].
    [Google Scholar]
  27. Halsted C. H.. ( 2013;). B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med 51: 457–465 [CrossRef] [PubMed].
    [Google Scholar]
  28. Herrero S., González E., Gillikin J. W., Vélëz H., Daub M. E.. ( 2011;). Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis. Plant Mol Biol 76: 157–169 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ito T., Iimori J., Takayama S., Moriyama A., Yamauchi A., Hemmi H., Yoshimura T.. ( 2013;). Conserved pyridoxal protein that regulates Ile and Val metabolism. J Bacteriol 195: 5439–5449 [CrossRef] [PubMed].
    [Google Scholar]
  30. Jochmann N., Götker S., Tauch A.. ( 2011;). Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032. Microbiology 157: 77–88 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kim J., Kershner J. P., Novikov Y., Shoemaker R. K., Copley S. D.. ( 2010;). Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5′-phosphate synthesis. Mol Syst Biol 6: 436 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kurihara S., Oda S., Kato K., Kim H. G., Koyanagi T., Kumagai H., Suzuki H.. ( 2005;). A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280: 4602–4608 [CrossRef] [PubMed].
    [Google Scholar]
  33. Lam H. M., Winkler M. E.. ( 1992;). Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol 174: 6033–6045 [PubMed].
    [Google Scholar]
  34. Lavinder J. J., Hari S. B., Sullivan B. J., Magliery T. J.. ( 2009;). High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J Am Chem Soc 131: 3794–3795 [CrossRef] [PubMed].
    [Google Scholar]
  35. Lee M.-W., Kim B.-J., Choi H.-K., Ryu M.-J., Kim S.-B., Kang K.-M., Cho E.-J., Youn H.-D., Huh W.-K., Kim S. T.. ( 2007;). Global protein expression profiling of budding yeast in response to DNA damage. Yeast 24: 145–154 [CrossRef] [PubMed].
    [Google Scholar]
  36. Letunic I., Bork P.. ( 2011;). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: (suppl.), W475–W478 [CrossRef] [PubMed].
    [Google Scholar]
  37. Li W., Cowley A., Uludag M., Gur T., McWilliam H., Squizzato S., Park Y. M., Buso N., Lopez R.. ( 2015;). EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43: (W1), W580–W584 [CrossRef] [PubMed].
    [Google Scholar]
  38. Luo H., Lin Y., Gao F., Zhang C. T., Zhang R.. ( 2014;). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 42: (D1), D574–D580 [CrossRef] [PubMed].
    [Google Scholar]
  39. Mills P. B., Struys E., Jakobs C., Plecko B., Baxter P., Baumgartner M., Willemsen M.A.A.P., Omran H., Tacke U., other authors. ( 2006;). Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12: 307–309 [CrossRef] [PubMed].
    [Google Scholar]
  40. Mizushina Y., Xu X., Matsubara K., Murakami C., Kuriyama I., Oshige M., Takemura M., Kato N., Yoshida H., Sakaguchi K.. ( 2003;). Pyridoxal 5′-phosphate is a selective inhibitor in vivo of DNA polymerase alpha and epsilon. Biochem Biophys Res Commun 312: 1025–1032 [CrossRef] [PubMed].
    [Google Scholar]
  41. Moccand C., Kaufmann M., Fitzpatrick T. B.. ( 2011;). It takes two to tango: defining an essential second active site in pyridoxal 5′-phosphate synthase. PLoS One 6: e16042 [CrossRef] [PubMed].
    [Google Scholar]
  42. Mooney S., Hellmann H.. ( 2010;). Vitamin B6: killing two birds with one stone?. Phytochemistry 71: 495–501 [CrossRef] [PubMed].
    [Google Scholar]
  43. Moore S. D.. ( 2011;). Assembling new Escherichia coli strains by transduction using phage P1. Methods Mol Biol 765: 155–169 [CrossRef] [PubMed].
    [Google Scholar]
  44. Mukherjee T., Hanes J., Tews I., Ealick S. E., Begley T. P.. ( 2011;). Pyridoxal phosphate: biosynthesis and catabolism. Biochim Biophys Acta 1814: 1585–1596 [CrossRef] [PubMed].
    [Google Scholar]
  45. Musayev F. N., Di Salvo M. L., Ko T. P., Schirch V., Safo M. K.. ( 2003;). Structure and properties of recombinant human pyridoxine 5′-phosphate oxidase. Protein Sci 12: 1455–1463 [CrossRef] [PubMed].
    [Google Scholar]
  46. Nichols R. J., Sen S., Choo Y. J., Beltrao P., Zietek M., Chaba R., Lee S., Kazmierczak K. M., Lee K. J., other authors. ( 2011;). Phenotypic landscape of a bacterial cell. Cell 144: 143–156 [CrossRef] [PubMed].
    [Google Scholar]
  47. Niehaus T. D., Gerdes S., Hodge-Hanson K., Zhukov A., Cooper A. J., ElBadawi-Sidhu M., Fiehn O., Downs D. M., Hanson A. D.. ( 2015;). Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genomics 16: 382 [CrossRef] [PubMed].
    [Google Scholar]
  48. Novichkov P. S., Kazakov A. E., Ravcheev D. A., Leyn S. A., Kovaleva G. Y., Sutormin R. A., Kazanov M. D., Riehl W., Arkin A. P., other authors. ( 2013;). RegPrecise 3.0—a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics 14: 745 [CrossRef] [PubMed].
    [Google Scholar]
  49. Ohsawa H., Gualerzi C.. ( 1981;). Structure-function relationship in Escherichia coli initiation factors. Identification of a lysine residue in the ribosomal binding site of initiation factor by site-specific chemical modification with pyridoxal phosphate. J Biol Chem 256: 4905–4912 [PubMed].
    [Google Scholar]
  50. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., other authors. ( 2014;). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42: (D1), D206–D214 [CrossRef] [PubMed].
    [Google Scholar]
  51. Paul L., Ueland P. M., Selhub J.. ( 2013;). Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr Rev 71: 239–244 [CrossRef] [PubMed].
    [Google Scholar]
  52. Percudani R., Peracchi A.. ( 2003;). A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep 4: 850–854 [CrossRef] [PubMed].
    [Google Scholar]
  53. Percudani R., Peracchi A.. ( 2009;). The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10: 273 [CrossRef] [PubMed].
    [Google Scholar]
  54. Perry T. A., Weerasuriya A., Mouton P. R., Holloway H. W., Greig N. H.. ( 2004;). Pyridoxine-induced toxicity in rats: a stereological quantification of the sensory neuropathy. Exp Neurol 190: 133–144 [CrossRef] [PubMed].
    [Google Scholar]
  55. Phillips K., de la Peña A. H.. ( 2011;). The combined use of the Thermofluor assay and ThermoQ analytical software for the determination of protein stability and buffer optimization as an aid in protein crystallization. Curr Proto Mol Biol 94: 10.28.1–10.28.15 [CrossRef].
    [Google Scholar]
  56. Rueschhoff E. E., Gillikin J. W., Sederoff H. W., Daub M. E.. ( 2013;). The SOS4 pyridoxal kinase is required for maintenance of vitamin B6-mediated processes in chloroplasts. Plant Physiol Biochem 63: 281–291 [CrossRef] [PubMed].
    [Google Scholar]
  57. Rusmini R., Vecchietti D., Macchi R., Vidal-Aroca F., Bertoni G.. ( 2014;). A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa. BMC Microbiol 14: 24 [CrossRef] [PubMed].
    [Google Scholar]
  58. Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muñiz-Rascado L., García-Sotelo J. S., Weiss V., Solano-Lira H., Martínez-Flores I., other authors. ( 2013;). RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 41: (D1), D203–D213 [CrossRef] [PubMed].
    [Google Scholar]
  59. Sambrook J. E., Fritsch F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  60. Sampson D. A., O'Connor D. K.. ( 1989;). Response of B-6 vitamers in plasma, erythrocytes and tissues to vitamin B-6 depletion and repletion in the rat. J Nutr 119: 1940–1948 [PubMed].
    [Google Scholar]
  61. Samsonova N. N., Smirnov S. V., Altman I. B., Ptitsyn L. R.. ( 2003;). Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3: 2 [CrossRef] [PubMed].
    [Google Scholar]
  62. Samsonova N. N., Smirnov S. V., Novikova A. E., Ptitsyn L. R.. ( 2005;). Identification of Escherichia coli K12 YdcW protein as a gamma-aminobutyraldehyde dehydrogenase. FEBS Lett 579: 4107–4112 [CrossRef] [PubMed].
    [Google Scholar]
  63. Sang Y., Locy R. D., Goertzen L. R., Rashotte A. M., Si Y., Kang K., Singh N. K.. ( 2011;). Expression, in vivo localization and phylogenetic analysis of a pyridoxine 5′-phosphate oxidase in Arabidopsis thaliana. Plant Physiol Biochem 49: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  64. Schaeppi U., Krinke G.. ( 1982;). Pyridoxine neuropathy: correlation of functional tests and neuropathology in beagle dogs treated with large doses of vitamin B6. Agents Actions 12: 575–582 [CrossRef] [PubMed].
    [Google Scholar]
  65. Schneider B. L., Hernandez V. J., Reitzer L.. ( 2013;). Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol 88: 537–550 [CrossRef] [PubMed].
    [Google Scholar]
  66. Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., Ideker T.. ( 2003;). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504 [CrossRef] [PubMed].
    [Google Scholar]
  67. Shi H., Xiong L., Stevenson B., Lu T., Zhu J. K.. ( 2002;). The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14: 575–588 [CrossRef] [PubMed].
    [Google Scholar]
  68. Suvurova I. A., Rodionov D. A.. ( 2016;). Comparative genomics of pyridoxal 5′-phosphate-dependent transcription factor regulons in Bacteria. Microbial Genomics2. [CrossRef].
    [Google Scholar]
  69. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., other authors. ( 2015;). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: (D1), D447–D452 [CrossRef] [PubMed].
    [Google Scholar]
  70. Szydlowski N., Bürkle L., Pourcel L., Moulin M., Stolz J., Fitzpatrick T. B.. ( 2013;). Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis. Plant J 75: 40–52 [CrossRef] [PubMed].
    [Google Scholar]
  71. Tamames J., González-Moreno M., Mingorance J., Valencia A., Vicente M.. ( 2001;). Bringing gene order into bacterial shape. Trends Genet 17: 124–126 [CrossRef] [PubMed].
    [Google Scholar]
  72. Titiz O., Tambasco-Studart M., Warzych E., Apel K., Amrhein N., Laloi C., Fitzpatrick T. B.. ( 2006;). PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J 48: 933–946 [CrossRef] [PubMed].
    [Google Scholar]
  73. Tramonti A., Fiascarelli A., Milano T., di Salvo M. L., Nogués I., Pascarella S., Contestabile R.. ( 2015;). Molecular mechanism of PdxR - a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii. FEBS J 282: 2966–2984 [CrossRef] [PubMed].
    [Google Scholar]
  74. Vanderschuren H., Boycheva S., Li K. T., Szydlowski N., Gruissem W., Fitzpatrick T. B.. ( 2013;). Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Front Plant Sci 4: 143 [CrossRef] [PubMed].
    [Google Scholar]
  75. Vermeersch J. J., Christmann-Franck S., Karabashyan L. V., Fermandjian S., Mirambeau G., Der Garabedian P. A.. ( 2004;). Pyridoxal 5′-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid. Nucleic Acids Res 32: 5649–5657 [CrossRef] [PubMed].
    [Google Scholar]
  76. Whalen W. A., Berg C. M.. ( 1982;). Analysis of an avtA:Mu d1(Ap lac) mutant: metabolic role of transaminase C. J Bacteriol 150: 739–746 [PubMed].
    [Google Scholar]
  77. Whittaker M. M., Penmatsa A., Whittaker J. W.. ( 2015;). The Mtm1p carrier and pyridoxal 5′-phosphate cofactor trafficking in yeast mitochondria. Arch Biochem Biophys 568: 64–70 [CrossRef] [PubMed].
    [Google Scholar]
  78. Yang E. S., Schirch V.. ( 2000;). Tight binding of pyridoxal 5′-phosphate to recombinant Escherichia coli pyridoxine 5′-phosphate oxidase. Arch Biochem Biophys 377: 109–114 [CrossRef] [PubMed].
    [Google Scholar]
  79. Zhao G., Winkler M. E.. ( 1995;). Kinetic limitation and cellular amount of pyridoxine (pyridoxamine) 5′-phosphate oxidase of Escherichia coli K-12. J Bacteriol 177: 883–891 [PubMed].
    [Google Scholar]
  80. Zhou J., Rudd K. E.. ( 2013;). EcoGene 3.0. Nucleic Acids Res 41: (D1), D613–D624 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000255
Loading
/content/journal/micro/10.1099/mic.0.000255
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error