1887

Abstract

A gene, , was identified by transposon mutagenesis to be required for the expression of , an operon coding for part of the chaperone–usher (CU) system in this bacterium. The MXAN3487 protein displays sequence and structural homology to adenosine 5′-phosphosulphate (APS) kinase family members and contains putative motifs for ATP and APS binding. Although the locus is not linked to other sulphate assimilation genes, its protein product may have APS kinase activity and the importance of the ATP-binding site for activity was demonstrated. Expression of was not affected by sulphate availability, suggesting that MXAN3487 may not function in a reductive sulphate assimilation pathway. Deletion of significantly delayed fruiting body formation and the production of McuA, a spore coat protein secreted by the Mcu CU system. Based on these observations and data from our previous studies, we propose that MXAN3487 may phosphorylate molecules structurally related to APS, generating metabolites necessary for development, and that exerts a positive effect on the operon whose expression is morphogenesis dependent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000254
2016-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/672.html?itemId=/content/journal/micro/10.1099/mic.0.000254&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Begley T. P. , Kinsland C. , Strauss E. . ( 2001;). The biosynthesis of coenzyme A in bacteria. Vitam Horm 61: 157–171 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cao P. , Dey A. , Vassallo C. N. , Wall D. . ( 2015;). How myxobacteria cooperate. J Mol Biol 427: 3709–3721 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cao S. , Wu M. , Xu S. , Yan X. , Mao X. . ( 2015;). Identification of a putative flavin adenine dinucleotide-binding monooxygenase as a regulator for Myxococcus xanthus development. J Bacteriol 197: 1185–1196 [CrossRef] [PubMed].
    [Google Scholar]
  5. Dahl J. L. , Tengra F. K. , Dutton D. , Yan J. , Andacht T. M. , Coyne L. , Windell V. , Garza A. G. . ( 2007;). Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach. J Bacteriol 189: 3187–3197 [CrossRef] [PubMed].
    [Google Scholar]
  6. Deyrup A. T. , Krishnan S. , Cockburn B. N. , Schwartz N. B. . ( 1998;). Deletion and site-directed mutagenesis of the ATP-binding motif (P-loop) in the bifunctional murine ATP-sulfurylase/adenosine 5′-phosphosulfate kinase enzyme. J Biol Chem 273: 9450–9456 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dworkin M. . ( 1996;). Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60: 70–102 [PubMed].
    [Google Scholar]
  8. Geibel S. , Waksman G. . ( 2013;). The molecular dissection of the chaperone-usher pathway. Biochim Biophys Acta 1843: 1559–1567.[CrossRef]
    [Google Scholar]
  9. Gorski L. , Kaiser D. . ( 1998;). Targeted mutagenesis of s54 activator proteins in Myxococcus xanthus . J Bacteriol 180: 5896–5905 [PubMed].
    [Google Scholar]
  10. Holkenbrink C. , Hoiczyk E. , Kahnt J. , Higgs P. I. . ( 2014;). Synthesis and assembly of a novel glycan layer in Myxococcus xanthus spores. J Biol Chem 289: 32364–32378 [CrossRef] [PubMed].
    [Google Scholar]
  11. Islam S. T. , Mignot T. . ( 2015;). The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism in Myxococcus xanthus . Semin Cell Dev Biol 46: 143–154 [CrossRef] [PubMed].
    [Google Scholar]
  12. Julien B. , Kaiser A. D. , Garza A. . ( 2000;). Spatial control of cell differentiation in Myxococcus xanthus . Proc Natl Acad Sci U S A 97: 9098–9103 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kaiser D. . ( 1979;). Social gliding is correlated with the presence of pili in Myxococcus xanthus . Proc Natl Acad Sci U S A 76: 5952–5956 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kaiser D. , Robinson M. , Kroos L. . ( 2010;). Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2: a000380 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kashefi K. , Hartzell P. L. . ( 1995;). Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF - defect. Mol Microbiol 15: 483–494 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kelley L. A. , Mezulis S. , Yates C. M. , Wass M. N. , Sternberg M. J. . ( 2015;). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10: 845–858 [CrossRef] [PubMed].
    [Google Scholar]
  17. Konovalova A. , Petters T. , Søgaard-Andersen L. . ( 2010;). Extracellular biology of Myxococcus xanthus . FEMS Microbiol Rev 34: 89–106 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kottel R. H. , Bacon K. , Clutter D. , White D. . ( 1975;). Coats from Myxococcus xanthus: characterization and synthesis during myxospore differentiation. J Bacteriol 124: 550–557 [PubMed].
    [Google Scholar]
  19. Kroos L. , Kuspa A. , Kaiser D. . ( 1986;). A global analysis of developmentally regulated genes in Myxococcus xanthus . Dev Biol 117: 252–266 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lansdon E. B. , Segel I. H. , Fisher A. J. . ( 2002;). Ligand-induced structural changes in adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum . Biochemistry 41: 13672–13680 [CrossRef] [PubMed].
    [Google Scholar]
  21. Leng X. , Zhu W. , Jin J. , Mao X. . ( 2011;). Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation. Microbiology 157: 1886–1896 [CrossRef] [PubMed].
    [Google Scholar]
  22. Leyh T. S. , Vogt T. F. , Suo Y. . ( 1992;). The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Biol Chem 267: 10405–10410 [PubMed].
    [Google Scholar]
  23. Lorenzen W. , Ring M. W. , Schwär G. , Bode H. B. . ( 2009;). Isoprenoids are essential for fruiting body formation in Myxococcus xanthus . J Bacteriol 191: 5849–5853 [CrossRef] [PubMed].
    [Google Scholar]
  24. MacRae I. J. , Segel I. H. , Fisher A. J. . ( 2000;). Crystal structure of adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum . Biochemistry 39: 1613–1621 [CrossRef] [PubMed].
    [Google Scholar]
  25. MacRae I. J. , Segel I. H. , Fisher A. J. . ( 2002;). Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum . Nat Struct Biol 9: 945–949 [CrossRef] [PubMed].
    [Google Scholar]
  26. McWilliam H. , Li W. , Uludag M. , Squizzato S. , Park Y. M. , Buso N. , Cowley A. P. , Lopez R. . ( 2013;). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41: (W1), W597–W600 [CrossRef] [PubMed].
    [Google Scholar]
  27. Meiser P. , Bode H. B. , Müller R. . ( 2006;). The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci U S A 103: 19128–19133 [CrossRef] [PubMed].
    [Google Scholar]
  28. Meiser P. , Weissman K. J. , Bode H. B. , Krug D. , Dickschat J. S. , Sandmann A. , Müller R. . ( 2008;). DKxanthene biosynthesis - understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem Biol 15: 771–781 [CrossRef] [PubMed].
    [Google Scholar]
  29. Otani M. , Kozuka S. , Xu C. , Umezawa C. , Sano K. , Inouye S. . ( 1998;). Protein W, a spore-specific protein in Myxococcus xanthus, formation of a large electron-dense particle in a spore. Mol Microbiol 30: 57–66 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pinto R. , Tang Q. X. , Britton W. J. , Leyh T. S. , Triccas J. A. . ( 2004;). The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology 150: 1681–1686 [CrossRef] [PubMed].
    [Google Scholar]
  31. Romeo J. M. , Esmon B. , Zusman D. R. . ( 1986;). Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains. Proc Natl Acad Sci U S A 83: 6332–6336 [CrossRef] [PubMed].
    [Google Scholar]
  32. Rubin E. J. , Akerley B. J. , Novik V. N. , Lampe D. J. , Husson R. N. , Mekalanos J. J. . ( 1999;). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96: 1645–1650 [CrossRef] [PubMed].
    [Google Scholar]
  33. Saier M.H., Jr . . ( 2006;). Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214: 75–90 [CrossRef] [PubMed].
    [Google Scholar]
  34. Saraste M. , Sibbald P. R. , Wittinghofer A. . ( 1990;). The P-loop - a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15: 430–434 [CrossRef] [PubMed].
    [Google Scholar]
  35. Satishchandran C. , Taylor J. C. , Markham G. D. . ( 1993;). The ORF1 of the gentamicin-resistance operon (aac) of Pseudomonas aeruginosa encodes adenosine 5′-phosphosulphate kinase. Mol Microbiol 9: 1223–1227 [CrossRef] [PubMed].
    [Google Scholar]
  36. Shen Y. , Sharma P. , da Silva F. G. , Ronald P. . ( 2002;). The Xanthomonas oryzae pv, oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol 44: 37–48 [CrossRef] [PubMed].
    [Google Scholar]
  37. Shi W. , Zusman D. R. . ( 1993;). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90: 3378–3382 [CrossRef] [PubMed].
    [Google Scholar]
  38. Shi X. , Wegener-Feldbrügge S. , Huntley S. , Hamann N. , Hedderich R. , Søgaard-Andersen L. . ( 2008;). Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus . J Bacteriol 190: 613–624 [CrossRef] [PubMed].
    [Google Scholar]
  39. Søgaard-Andersen L. , Overgaard M. , Lobedanz S. , Ellehauge E. , Jelsbak L. , Rasmussen A. A. . ( 2003;). Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus . Mol Microbiol 48: 1–8 [CrossRef] [PubMed].
    [Google Scholar]
  40. Spaink H. P. , Okker R. J. , Wijffelman C. A. , Pees E. , Lugtenberg B. J. . ( 1987;). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9: 27–39 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tengra F. K. , Dahl J. L. , Dutton D. , Caberoy N. B. , Coyne L. , Garza A. G. . ( 2006;). CbgA, a protein involved in cortex formation and stress resistance in Myxococcus xanthus spores. J Bacteriol 188: 8299–8302 [CrossRef] [PubMed].
    [Google Scholar]
  42. Waksman G. , Hultgren S. J. . ( 2009;). Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7: 765–774 [CrossRef] [PubMed].
    [Google Scholar]
  43. Williams S. J. , Senaratne R. H. , Mougous J. D. , Riley L. W. , Bertozzi C. R. . ( 2002;). 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 277: 32606–32615 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wu M. , Xu S. , Zhu W. , Mao X. . ( 2014;). The archaic chaperone-usher pathways may depend on donor strand exchange for intersubunit interactions. Microbiology 160: 2200–2207 [CrossRef] [PubMed].
    [Google Scholar]
  45. Yu Y. T. , Yuan X. , Velicer G. J. . ( 2010;). Adaptive evolution of an sRNA that controls Myxococcus development. Science 328: 993 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zhu W. , Wu M. , Cao S. , Peng Y. , Mao X. . ( 2013;). Characterization of McuB, a periplasmic chaperone-like protein involved in the assembly of Myxococcus spore coat. J Bacteriol 195: 3105–3114 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000254
Loading
/content/journal/micro/10.1099/mic.0.000254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error