1887

Abstract

Only limited information is available on the roles of different rumen ciliate community types, first described by Eadie in 1962, in enteric methane (CH) formation by their ruminant hosts. If the different types were differentially associated with CH formation, then ciliate community typing could be used to identify naturally high and low CH-emitting animals. Here we measured the CH yields [g CH (kg feed dry matter intake, DMI)] of 118 sheep fed a standard pelleted lucerne diet at two different times, at least 2 weeks apart. There were significant differences ( < 2.2 × 10, Wilcoxon rank sum test) in the CH yields ( ± ) from sheep selected as high [16.7 ± 1.5 g CH (kg DMI)] and low emitters [13.3 ± 1.5 g CH (kg DMI)]. A rumen sample was collected after each of the two measurements, and ciliate composition was analysed using barcoded 454 Titanium pyrosequencing of 18S rRNA genes. The genera found, in order of mean relative abundance, were , , , , , and , none of which was significantly correlated with the CH emissions ranking associated with the rumen sample. Ciliate communities naturally assembled into four types (A, AB, B and O), characterized by the presence and absence of key genera. There was no difference in CH yield between sheep that harboured different ciliate community types, suggesting that these did not underlie the natural variation in CH yields. Further research is needed to unravel the nature of interactions between ciliate protozoa and other rumen micro-organisms, which may ultimately lead to contrasting CH emission phenotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000245
2016-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/459.html?itemId=/content/journal/micro/10.1099/mic.0.000245&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Bauchop T.. 1979; The rumen ciliate Epidinium in primary degradation of plant tissues. Appl Environ Microbiol37:1217–1223[PubMed]
    [Google Scholar]
  3. Bauchop T., Clarke R. T. J.. 1976; Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen. Appl Environ Microbiol32:417–422[PubMed]
    [Google Scholar]
  4. Belanche A., de la Fuente G., Newbold C. J.. 2014; Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol90:663–677 [CrossRef][PubMed]
    [Google Scholar]
  5. Belanche A., de la Fuente G., Newbold C. J.. 2015; Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol91:fiu026 [CrossRef][PubMed]
    [Google Scholar]
  6. Bird S. H., Hegarty R. S., Woodgate R.. 2008; Persistence of defaunation effects on digestion and methane production in ewes. Aust J Exp Agric Anim Prod Sci48:152–155 [CrossRef]
    [Google Scholar]
  7. Bray J. R., Curtis J. T.. 1957; An ordination of upland forest communities of southern Wisconsin. Ecol Monogr27:325–349 [CrossRef]
    [Google Scholar]
  8. Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G., Goodrich J. K., other authors. 2010; QIIME allows analysis of high-throughput community sequencing data. Nat Methods7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  9. Coleman G. S.. 1986; The metabolism of rumen ciliate protozoa. FEMS Microbiol Rev39:321–344 [CrossRef]
    [Google Scholar]
  10. Eadie J. M.. 1962; Inter-relationships between certain rumen ciliate protozoa. J Gen Microbiol29:579–588 [CrossRef]
    [Google Scholar]
  11. Eadie J. M.. 1967; Studies on the ecology of certain rumen ciliate protozoa. J Gen Microbiol49:175–194 [CrossRef][PubMed]
    [Google Scholar]
  12. Göçmen B., Dehority B. A., Rastgeldi S.. 2003; Ciliated protozoa in the rumen of Turkish domestic cattle (Bos taurus L.). J Eukaryot Microbiol50:104–108 [CrossRef][PubMed]
    [Google Scholar]
  13. Hegarty R. S., Bird S. H., Vanselow B. A., Woodgate R.. 2008; Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr100:1220–1227 [CrossRef][PubMed]
    [Google Scholar]
  14. Henderson G., Cox F., Kittelmann S., Miri V. H., Zethof M., Noel S. J., Waghorn G. C., Janssen P. H.. 2013; Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One8:e74787 [CrossRef][PubMed]
    [Google Scholar]
  15. Hinkle D. E., Wiersma W., Jurs S. G.. 2003; Applied Statistics for the Behavioral Sciences, 5th edn. Boston, MA: Houghton Mifflin;
    [Google Scholar]
  16. Janssen P. H.. 2010; Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol160:1–22 [CrossRef]
    [Google Scholar]
  17. Jouany J. P., Toillon S.. 1997; Effect of addition of Isotricha spp or a mixed fauna to defaunated rumen contents on methane production measured in vitro. Reprod Nutr Dev37:(Suppl. 1)44–45 [CrossRef]
    [Google Scholar]
  18. Jouany J. P., Zainab B., Senaud J., Groliere C. A., Grain J., Thivend P.. 1981; Rôle of the rumen ciliate protozoa Polyplastron multivesiculatum, Entodinium sp. and Isotricha prostoma in the digestion of a mixed diet in sheep. Reprod Nutr Dev21:871–884 [CrossRef][PubMed]
    [Google Scholar]
  19. Kittelmann S., Janssen P. H.. 2011; Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecol75:468–481 [CrossRef][PubMed]
    [Google Scholar]
  20. Kittelmann S., Seedorf H., Walters W. A., Clemente J. C., Knight R., Gordon J. I., Janssen P. H.. 2013; Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One8:e47879 [CrossRef][PubMed]
    [Google Scholar]
  21. Kittelmann S., Pinares-Patiño C. S., Seedorf H., Kirk M. R., Ganesh S., McEwan J. C., Janssen P. H.. 2014; Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One9:e103171 [CrossRef][PubMed]
    [Google Scholar]
  22. Kittelmann S., Devente S. R., Kirk M. R., Seedorf H., Dehority B. A., Janssen P. H.. 2015; Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Appl Environ Microbiol81:2433–2444 [CrossRef][PubMed]
    [Google Scholar]
  23. Kreuzer M., Kirchgessner M., Müller H.. 1986; Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Anim Feed Sci Technol16:233–241 [CrossRef]
    [Google Scholar]
  24. Krumholz L. R., Forsberg C. W., Veira D. M.. 1983; Association of methanogenic bacteria with rumen protozoa. Can J Microbiol29:676–680 [CrossRef][PubMed]
    [Google Scholar]
  25. Lloyd D., Williams A. G., Amann R., Hayes A. J., Durrant L., Ralphs J. R.. 1996; Intracellular prokaryotes in rumen ciliate protozoa: detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol32:523–531 [CrossRef]
    [Google Scholar]
  26. Newbold C. J., Lassalas B., Jouany J. P.. 1995; The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol21:230–234 [CrossRef][PubMed]
    [Google Scholar]
  27. Pinares-Patiño C. S., Hickey S. M., Young E. A., Dodds K. G., MacLean S., Molano G., Sandoval E., Kjestrup H., Harland R., other authors. 2013; Heritability estimates of methane emissions from sheep. Animal7:(Suppl. 2)316–321 [CrossRef][PubMed]
    [Google Scholar]
  28. R Core Team 2014; R: A Language and Environment for Statistical Computing Vienna:http://www.R-project.org/ Austria: R Foundation for Statistical Computing;
    [Google Scholar]
  29. Ranilla M. J., Jouany J. P., Morgavi D. P.. 2007; Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol45:675–680 [CrossRef][PubMed]
    [Google Scholar]
  30. Regensbogenova M., Pristas P., Javorsky P., Moon-van der Staay S. Y., van der Staay G. W., Hackstein J. H., Newbold C. J., McEwan N. R.. 2004; Assessment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol39:144–147 [CrossRef][PubMed]
    [Google Scholar]
  31. Rius A. G., Kittelmann S., Macdonald K. A., Waghorn G. C., Janssen P. H., Sikkema E.. 2012; Nitrogen metabolism and rumen microbial enumeration in lactating cows with divergent residual feed intake fed high-digestibility pasture. J Dairy Sci95:5024–5034 [CrossRef][PubMed]
    [Google Scholar]
  32. Stumm C. K., Gijzen H. J., Vogels G. D.. 1982; Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr47:95–99 [CrossRef][PubMed]
    [Google Scholar]
  33. Tokura M., Ushida K., Miyazaki K., Kojima Y.. 1997; Methanogens associated with rumen ciliates. FEMS Microbiol Ecol22:137–143 [CrossRef]
    [Google Scholar]
  34. Towne G., Nagaraja T. G., Kemp K. K.. 1988; Ruminal ciliated protozoa in bison. Appl Environ Microbiol54:2733–2736[PubMed]
    [Google Scholar]
  35. Tymensen L., Barkley C., McAllister T. A.. 2012; Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J Microbiol Methods88:1–6 [CrossRef][PubMed]
    [Google Scholar]
  36. Vogels G. D., Hoppe W. F., Stumm C. K.. 1980; Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol40:608–612[PubMed]
    [Google Scholar]
  37. Whitelaw F. G., Eadie J. M., Bruce L. A., Shand W. J.. 1984; Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br J Nutr52:261–275 [CrossRef][PubMed]
    [Google Scholar]
  38. Xia Y., Kong Y. H., Seviour R., Forster R. J., Kisidayova S., McAllister T. A.. 2014; Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J Appl Microbiol116:14–22 [CrossRef][PubMed]
    [Google Scholar]
  39. Zeitz J. O., Kreuzer M., Soliva C. R.. 2013; In vitro methane formation and carbohydrate fermentation by rumen microbes as influenced by selected rumen ciliate species. Eur J Protistol49:389–399 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000245
Loading
/content/journal/micro/10.1099/mic.0.000245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error