1887

Abstract

Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the complex species, is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000214
2016-02-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/283.html?itemId=/content/journal/micro/10.1099/mic.0.000214&mimeType=html&fmt=ahah

References

  1. Albersheim P., Nevins D. J., English P. D., Karr A.. 1967; A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr Res5:340–345 [CrossRef]
    [Google Scholar]
  2. Barclay T., Ginic-Markovic M., Johnston M. R., Cooper P. D., Petrovsky N.. 2012; Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy. Carbohydr Res352:117–125 [CrossRef][PubMed]
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  4. Branda S. S., Vik S., Friedman L., Kolter R.. 2005; Biofilms: the matrix revisited. Trends Microbiol13:20–26 [CrossRef][PubMed]
    [Google Scholar]
  5. Caraher E., Duff C., Mullen T., Mc Keon S., Murphy P., Callaghan M., McClean S.. 2007; Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans . J Cyst Fibros6:49–56 [CrossRef][PubMed]
    [Google Scholar]
  6. Cescutti P., Bosco M., Picotti F., Impallomeni G., Leitão J. H., Richau J. A., Sá-Correia I.. 2000; Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia . Biochem Biophys Res Commun273:1088–1094 [CrossRef][PubMed]
    [Google Scholar]
  7. Cescutti P., Impallomeni G., Garozzo D., Sturiale L., Herasimenka Y., Lagatolla C., Rizzo R.. 2003; Exopolysaccharides produced by a clinical strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res338:2687–2695 [CrossRef][PubMed]
    [Google Scholar]
  8. Cescutti P., Foschiatti M., Furlanis L., Lagatolla C., Rizzo R.. 2010; Isolation and characterisation of the biological repeating unit of cepacian, the exopolysaccharide produced by bacteria of the Burkholderia cepacia complex. Carbohydr Res345:1455–1460 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y.-P., Zhang P., Guo J.-S., Fang F., Gao X., Li C.. 2013; Functional groups characteristics of EPS in biofilm growing on different carriers. Chemosphere92:633–638 [CrossRef][PubMed]
    [Google Scholar]
  10. Coenye T., Vandamme P., LiPuma J. J., Govan J. R. W., Mahenthiralingam E.. 2003; Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol41:2797–2798 [CrossRef][PubMed]
    [Google Scholar]
  11. Conway B.-A.D., Venu V., Speert D. P.. 2002; Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol184:5678–5685 [CrossRef][PubMed]
    [Google Scholar]
  12. Cuzzi B., Cescutti P., Furlanis L., Lagatolla C., Sturiale L., Garozzo D., Rizzo R.. 2012; Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species. Innate Immun18:661–671 [CrossRef][PubMed]
    [Google Scholar]
  13. Cuzzi B., Herasimenka Y., Silipo A., Lanzetta R., Liut G., Rizzo R., Cescutti P.. 2014; Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation. PLoS One9:e94372 [CrossRef][PubMed]
    [Google Scholar]
  14. De Smet B., Mayo M., Peeters C., Zlosnik J. E. A., Spilker T., Hird T. J., LiPuma J. J., Kidd T. J., Kaestli M., other authors. 2015; Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol65:2265–2271 [CrossRef][PubMed]
    [Google Scholar]
  15. Dell A.. 1990; Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol193:647–660 [CrossRef][PubMed]
    [Google Scholar]
  16. Denman C. C., Robinson M. T., Sass A. M., Mahenthiralingam E., Brown A. R.. 2014; Growth on mannitol-rich media elicits a genome-wide transcriptional response in Burkholderia multivorans that impacts on multiple virulence traits in an exopolysaccharide-independent manner. Microbiology160:187–197 [CrossRef][PubMed]
    [Google Scholar]
  17. Dolfi S., Sveronis A., Silipo A., Rizzo R., Cescutti P.. 2015; A novel rhamno-mannan exopolysaccharide isolated from biofilms of Burkholderia multivorans C1576. Carbohydr Res411:42–48 [CrossRef][PubMed]
    [Google Scholar]
  18. Donlan R. M., Costerton J. W.. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  19. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F.. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem28:350–356 [CrossRef]
    [Google Scholar]
  20. Foschiatti M., Cescutti P., Tossi A., Rizzo R.. 2009; Inhibition of cathelicidin activity by bacterial exopolysaccharides. Mol Microbiol72:1137–1146 [CrossRef][PubMed]
    [Google Scholar]
  21. Govan J. R., Deretic V.. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev60:539–574[PubMed]
    [Google Scholar]
  22. Harris P. J., Henry R. J., Blakeney A. B., Stone B. A.. 1984; An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res127:59–73 [CrossRef][PubMed]
    [Google Scholar]
  23. Herasimenka Y., Cescutti P., Sampaio Noguera C. E., Ruggiero J. R., Urbani R., Impallomeni G., Zanetti F., Campidelli S., Prato M., Rizzo R.. 2008; Macromolecular properties of cepacian in water and in dimethylsulfoxide. Carbohydr Res343:81–89 [CrossRef][PubMed]
    [Google Scholar]
  24. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. 2000; Quantification of biofilm structures by the novel computer program comstat . Microbiology146:2395–2407 [CrossRef][PubMed]
    [Google Scholar]
  25. Høiby N., Ciofu O., Johansen H. K., Song Z., Moser C., Jensen P.Ø., Molin S., Givskov M., Tolker-Nielsen T., Bjarnsholt T.. 2011; The clinical impact of bacterial biofilms. Int J Oral Sci3:55–65 [CrossRef][PubMed]
    [Google Scholar]
  26. Huber B., Riedel K., Hentzer M., Heydorn A., Gotschlich A., Givskov M., Molin S., Eberl L.. 2001; The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology147:2517–2528 [CrossRef][PubMed]
    [Google Scholar]
  27. Huber B., Riedel K., Köthe M., Givskov M., Molin S., Eberl L.. 2002; Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol46:411–426 [CrossRef][PubMed]
    [Google Scholar]
  28. Jung J.-H., Choi N.-Y., Lee S.-Y.. 2013; Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol34:70–80 [CrossRef][PubMed]
    [Google Scholar]
  29. Kives J., Orgaz B., Sanjosé C.. 2006; Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52. Colloids Surf B Biointerfaces52:123–127 [CrossRef][PubMed]
    [Google Scholar]
  30. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R. W., Taylor P., Vandamme P.. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913[PubMed]
    [Google Scholar]
  31. Mann E. E., Wozniak D. J.. 2012; Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev36:893–916 [CrossRef][PubMed]
    [Google Scholar]
  32. Merritt J. H., Kadouri D. E., O'Toole G. A.. 2011; Growing and analyzing static biofilms. Curr Protoc Microbiol2011:1B11–1B118[CrossRef]
    [Google Scholar]
  33. Moryl M., Kaleta A., Strzelecki K., Róz˙alska S., Róz˙alski A.. 2014; Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm. Acta Biochim Pol61:133–139[PubMed]
    [Google Scholar]
  34. Nogueira C. E., Ruggiero J. R., Sist P., Cescutti P., Urbani R., Rizzo R.. 2005; Conformational features of cepacian: the exopolysaccharide produced by clinical strains of Burkholderia cepacia . Carbohydr Res340:1025–1037 [CrossRef][PubMed]
    [Google Scholar]
  35. Palmer K. L., Aye L. M., Whiteley M.. 2007; Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol189:8079–8087 [CrossRef][PubMed]
    [Google Scholar]
  36. Peeters C., Zlosnik J. E., Spilker T., Hird T. J., LiPuma J. J., Vandamme P.. 2013; Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol36:483–489 [CrossRef][PubMed]
    [Google Scholar]
  37. Quilès F., Humbert F.. 2014; On the production of glycogen by Pseudomonas fluorescens during biofilm development: an in situ study by attenuated total reflection-infrared with chemometrics. Biofouling30:709–718 [CrossRef][PubMed]
    [Google Scholar]
  38. Quilès F., Polyakov P., Humbert F., Francius G.. 2012; Production of extracellular glycogen by Pseudomonas fluorescens: spectroscopic evidence and conformational analysis by biomolecular recognition. Biomacromolecules13:2118–2127 [CrossRef][PubMed]
    [Google Scholar]
  39. Sage A., Linker A., Evans L. R., Lessie T. G.. 1990; Hexose phosphate metabolism and exopolysaccharide formation in Pseudomonas cepacia . Curr Microbiol20:191–198 [CrossRef]
    [Google Scholar]
  40. Schwab U., Abdullah L. H., Perlmutt O. S., Albert D., Davis C. W., Arnold R. R., Yankaskas J. R., Gilligan P., Neubauer H., other authors. 2014; Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun82:4729–4745 [CrossRef][PubMed]
    [Google Scholar]
  41. Silva I. N., Tavares A. C., Ferreira A. S., Moreira L. M.. 2013; Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro . PLoS One8:e82522 [CrossRef][PubMed]
    [Google Scholar]
  42. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P.. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407:762–764 [CrossRef][PubMed]
    [Google Scholar]
  43. Sist P., Cescutti P., Skerlavaj S., Urbani R., Leitão J. H., Sá-Correia I., Rizzo R.. 2003; Macromolecular and solution properties of cepacian: the exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res338:1861–1867 [CrossRef][PubMed]
    [Google Scholar]
  44. Skjåk-Braek G., Zanetti F., Paoletti S.. 1989; Effect of acetylation on some solution and gelling properties of alginates. Carbohydr Res185:131–138 [CrossRef]
    [Google Scholar]
  45. Sweet D. P., Shapiro R. H., Albersheim P.. 1975; Quantitative analysis by various g.l.c. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr Res40:217–225 [CrossRef]
    [Google Scholar]
  46. WHO 2014; Antimicrobial Resistance: Global Report on Surveillance 2014 Geneva: World Health Organization.;http://www.who.int/drugresistance/documents/surveillancereport/en /
    [Google Scholar]
  47. Young K. D.. 2006; The selective value of bacterial shape. Microbiol Mol Biol Rev70:660–703 [CrossRef][PubMed]
    [Google Scholar]
  48. Zlosnik J. E. A., Costa P. S., Brant R., Mori P. Y. B., Hird T. J., Fraenkel M. C., Wilcox P. G., Davidson A. G. F., Speert D. P.. 2011; Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. Am J Respir Crit Care Med183:67–72 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000214
Loading
/content/journal/micro/10.1099/mic.0.000214
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error