1887

Abstract

Whole genome sequencing of the response of W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in , increased expression of a unique transcriptional unit carrying the , and three other hypothetical genes (, and ) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential − 10 region at − 3 nt and a − 35 region at − 39 nt. Isogenic mutants FLL273 (PG1777 : : -) and FLL293 (PG1779 : : -) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO and Fe(NH)(SO).6HO. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the transcriptional unit may play an important role in oxidative stress resistance in via its ability to protect against DNA damage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000213
2016-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/256.html?itemId=/content/journal/micro/10.1099/mic.0.000213&mimeType=html&fmt=ahah

References

  1. Almeida M. S., Herrmann T., Peti W., Wilson I. A., Wüthrich K.. 2005; NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins. Protein Sci14:2880–2886 [CrossRef][PubMed]
    [Google Scholar]
  2. Bandyopadhyay S., Chandramouli K., Johnson M. K.. 2008; Iron–sulfur cluster biosynthesis. Biochem Soc Trans36:1112–1119 [CrossRef][PubMed]
    [Google Scholar]
  3. Barras F., Loiseau L., Py B.. 2005; How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol50:41–101 [CrossRef][PubMed]
    [Google Scholar]
  4. Blanc B., Clémancey M., Latour J. M., Fontecave M., Ollagnier de Choudens S.. 2014; Molecular investigation of iron-sulfur cluster assembly scaffolds under stress. Biochemistry53:7867–7869 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen K. E., Richards A. A., Ariffin J. K., Ross I. L., Sweet M. J., Kellie S., Kobe B., Martin J. L.. 2012; The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. Acta Crystallogr D Biol Crystallogr68:637–648 [CrossRef][PubMed]
    [Google Scholar]
  6. Chomczynski P.. 1992; One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem201:134–139 [CrossRef][PubMed]
    [Google Scholar]
  7. Chung M. C.. 1985; A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem148:498–502 [CrossRef][PubMed]
    [Google Scholar]
  8. Djaman O., Outten F. W., Imlay J. A.. 2004; Repair of oxidized iron-sulfur clusters in Escherichia coli. J Biol Chem279:44590–44599 [CrossRef][PubMed]
    [Google Scholar]
  9. Genevaux P., Georgopoulos C., Kelley W. L.. 2007; The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol66:840–857 [CrossRef][PubMed]
    [Google Scholar]
  10. Gralnick J. A., Downs D. M.. 2003; The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem278:20708–20715 [CrossRef][PubMed]
    [Google Scholar]
  11. Henry L. G., McKenzie R. M., Robles A., Fletcher H. M.. 2012; Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol7:497–512 [CrossRef][PubMed]
    [Google Scholar]
  12. Imlay J. A.. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol46:111–153 [CrossRef][PubMed]
    [Google Scholar]
  13. Jackson C. A., Hoffmann B., Slakeski N., Cleal S., Hendtlass A. J., Reynolds E. C.. 2000; A consensus Porphyromonas gingivalis promoter sequence. FEMS Microbiol Lett186:133–138 [CrossRef][PubMed]
    [Google Scholar]
  14. Jang S., Imlay J. A.. 2010; Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol78:1448–1467 [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson N. A., Liu Y., Fletcher H. M.. 2004; Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol19:233–239 [CrossRef][PubMed]
    [Google Scholar]
  16. Johnson N. A., McKenzie R. M., Fletcher H. M.. 2011; The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol Oral Microbiol26:62–77 [CrossRef][PubMed]
    [Google Scholar]
  17. Keyer K., Gort A. S., Imlay J. A.. 1995; Superoxide and the production of oxidative DNA damage. J Bacteriol177:6782–6790[PubMed]
    [Google Scholar]
  18. Klein B. A., Tenorio E. L., Lazinski D. W., Camilli A., Duncan M. J., Hu L. T.. 2012; Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics13:578 [CrossRef][PubMed]
    [Google Scholar]
  19. Lamont R. J., Jenkinson H. F.. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev62:1244–1263[PubMed]
    [Google Scholar]
  20. Lantz M. S.. 1996; New insights into mechanisms of bacterial pathogenesis in periodontitis. Curr Opin Periodontol3:10–18[PubMed]
    [Google Scholar]
  21. Loiseau L., Ollagnier-de Choudens S., Lascoux D., Forest E., Fontecave M., Barras F.. 2005; Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem280:26760–26769 [CrossRef][PubMed]
    [Google Scholar]
  22. Lund P. A.. 2001; Microbial molecular chaperones. Adv Microb Physiol44:93–140 [CrossRef][PubMed]
    [Google Scholar]
  23. Luo D., Bernard D. G., Balk J., Hai H., Cui X.. 2012; The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell24:4135–4148 [CrossRef][PubMed]
    [Google Scholar]
  24. McKenzie R. M., Johnson N. A., Aruni W., Dou Y., Masinde G., Fletcher H. M.. 2012; Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress. Microbiology158:2465–2479 [CrossRef][PubMed]
    [Google Scholar]
  25. Meuric V., Gracieux P., Tamanai-Shacoori Z., Perez-Chaparro J., Bonnaure-Mallet M.. 2008; Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis. Oral Microbiol Immunol23:308–314 [CrossRef][PubMed]
    [Google Scholar]
  26. Robles A. G., Reid K., Roy F., Fletcher H. M.. 2011; Porphyromonas gingivalis mutY is involved in the repair of oxidative stress-induced DNA mispairing. Mol Oral Microbiol26:175–186 [CrossRef][PubMed]
    [Google Scholar]
  27. Roche B., Aussel L., Ezraty B., Mandin P., Py B., Barras F.. 2013; Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta1827:455–469 [CrossRef][PubMed]
    [Google Scholar]
  28. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Schröder H., Langer T., Hartl F. U., Bukau B.. 1993; DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J12:4137–4144[PubMed]
    [Google Scholar]
  30. Seymour G. J., Gemmell E., Reinhardt R. A., Eastcott J., Taubman M. A.. 1993; Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res28:478–486 [CrossRef][PubMed]
    [Google Scholar]
  31. Smalley J. W., Silver J., Marsh P. J., Birss A. J.. 1998; The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J331:681–685 [CrossRef][PubMed]
    [Google Scholar]
  32. Smalley J. W., Birss A. J., Silver J.. 2000; The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the μ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett183:159–164[PubMed]
    [Google Scholar]
  33. Storz G., Imlay J. A.. 1999; Oxidative stress. Curr Opin Microbiol2:188–194 [CrossRef][PubMed]
    [Google Scholar]
  34. Touati D.. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys373:1–6 [CrossRef][PubMed]
    [Google Scholar]
  35. Tsou C. C., Chiang-Ni C., Lin Y. S., Chuang W. J., Lin M. T., Liu C. C., Wu J. J.. 2008; An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun76:4038–4045 [CrossRef][PubMed]
    [Google Scholar]
  36. Vanterpool E., Roy F., Fletcher H. M.. 2004; The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun72:5555–5564 [CrossRef][PubMed]
    [Google Scholar]
  37. Yuan L., Rodrigues P. H., Bélanger M., Dunn W. Jr, Progulske-Fox A.. 2007; The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo. FEMS Immunol Med Microbiol51:388–398 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000213
Loading
/content/journal/micro/10.1099/mic.0.000213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error