1887

Abstract

Two distinct bacterial and eukaryotic serine racemases (SRs) have been identified based on phylogenetic and biochemical characteristics. Although some reports have suggested that marine heterotrophic bacteria have the potential to produce -serine, the gene encoding bacterial SRs is not found in those bacterial genomes. In this study, using in-depth genomic analysis, we found that eukaryotic SR homologues were distributed widely in various bacterial genomes. Additionally, we selected a eukaryotic SR homologue from a marine heterotrophic bacterium, Och 149 (RiSR), and constructed an RiSR gene expression system in for studying the properties of the enzyme. Among the tested amino acids, the recombinant RiSR exhibited both racemization and dehydration activities only towards serine, similar to many eukaryotic SRs. Mg and MgATP enhanced both activities of RiSR, whereas EDTA abolished these enzymatic activities. The enzymatic properties and domain structure of RiSR were similar to those of eukaryotic SRs, particularly mammalian SRs. However, RiSR showed lower catalytic efficiency for -serine dehydration ( /  = 0.094 min mM) than those of eukaryotic SRs reported to date ( /  = 0.6–21 min mM). In contrast, the catalytic efficiency for -serine racemization of RiSR ( /  = 3.14 min mM) was 34-fold higher than that of -serine dehydration. These data suggested that RiSR primarily catalysed serine racemization rather than dehydration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000200
2016-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/53.html?itemId=/content/journal/micro/10.1099/mic.0.000200&mimeType=html&fmt=ahah

References

  1. Arias C. A., Martín-Martinez M., Blundell T. L., Arthur M., Courvalin P., Reynolds P. E.. 1999; Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol31:1653–1664 [CrossRef][PubMed]
    [Google Scholar]
  2. Asano Y., Endo K.. 1988; Amino acid racemase with broad substrate specificity, its properties and use in phenylalanine racemization. Appl Microbiol Biotechnol29:523–527 [CrossRef]
    [Google Scholar]
  3. Baumgart F., Rodríguez-Crespo I.. 2008; d-amino acids in the brain: the biochemistry of brain serine racemase. FEBS J275:3538–3545 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernardini J. J., Linget-Morice C., Hoh F., Collinson S. K., Kyslik P., Page W. J., Dell A., Abdallah M. A.. 1996; Bacterial siderophores: Structure elucidation, and 1., 13C and 15N two-dimensional NMR assignments of azoverdin and related siderophores synthesized by Azomonas macrocytogenes ATCC 12334. Biometals9:107–120 [CrossRef]
    [Google Scholar]
  5. Billard J. M.. 2012; d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids43:1851–1860 [CrossRef][PubMed]
    [Google Scholar]
  6. Buchan A., González J. M., Moran M. A.. 2005; Overview of the marine roseobacter lineage. Appl Environ Microbiol71:5665–5677 [CrossRef][PubMed]
    [Google Scholar]
  7. De Miranda J., Santoro A., Engelender S., Wolosker H.. 2000; Human serine racemase: moleular cloning, genomic organization and functional analysis. Gene256:183–188 [CrossRef][PubMed]
    [Google Scholar]
  8. De Miranda J., Panizzutti R., Foltyn V. N., Wolosker H.. 2002; Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci U S A99:14542–14547 [CrossRef][PubMed]
    [Google Scholar]
  9. Demange P., Bateman A., Mertz C., Dell A., Piémont Y., Abdallah M. A.. 1990; Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochemistry29:11041–11051 [CrossRef][PubMed]
    [Google Scholar]
  10. Dittmar T., Fitznar H. P., Kattner G.. 2001; Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from d- and l-amino acid. Geochim Cosmochim Acta65:4103–4114 [CrossRef]
    [Google Scholar]
  11. Foltyn V. N., Bendikov I., De Miranda J., Panizzutti R., Dumin E., Shleper M., Li P., Toney M. D., Kartvelishvily E., Wolosker H.. 2005; Serine racemase modulates intracellular d-serine levels through an alpha,beta-elimination activity. J Biol Chem280:1754–1763 [CrossRef][PubMed]
    [Google Scholar]
  12. Fujitani Y., Nakajima N., Ishihara K., Oikawa T., Ito K., Sugimoto M.. 2006; Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana. Phytochemistry67:668–674 [CrossRef][PubMed]
    [Google Scholar]
  13. Fujitani Y., Horiuchi T., Ito K., Sugimoto M.. 2007; Serine racemases from barley, Hordeum vulgare L., and other plant species represent a distinct eukaryotic group: gene cloning and recombinant protein characterization. Phytochemistry68:1530–1536 [CrossRef][PubMed]
    [Google Scholar]
  14. Gogami Y., Kobayashi A., Ikeuchi T., Oikawa T.. 2010; Site-directed mutagenesis of rice serine racemase: evidence that Glu219 and Asp225 mediate the effects of Mg2+ on the activity. Chem Biodivers7:1579–1590 [CrossRef][PubMed]
    [Google Scholar]
  15. Goto M., Yamauchi T., Kamiya N., Miyahara I., Yoshimura T., Mihara H., Kurihara T., Hirotsu K., Esaki N.. 2009; Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem284:25944–25952 [CrossRef][PubMed]
    [Google Scholar]
  16. Grishin N. V., Phillips M. A., Goldsmith E. J.. 1995; Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci4:1291–1304 [CrossRef][PubMed]
    [Google Scholar]
  17. Hashimoto A., Nishikawa T., Hayashi T., Fujii N., Harada K., Oka T., Takahashi K.. 1992; The presence of free d-serine in rat brain. FEBS Lett296:33–36 [CrossRef][PubMed]
    [Google Scholar]
  18. Hoffman H. E., Jirásková J., Ingr M., Zvelebil M., Konvalinka J.. 2009; Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif63:62–67 [CrossRef][PubMed]
    [Google Scholar]
  19. Huang Y., Nishikawa T., Satoh K., Iwata T., Fukushima T., Santa T., Homma H., Imai K.. 1998; Urinary excretion of d-serine in human: comparison of different ages and species. Biol Pharm Bull21:156–162 [CrossRef][PubMed]
    [Google Scholar]
  20. Ito T., Takahashi K., Naka T., Hemmi H., Yoshimura T.. 2007; Enzymatic assay of d-serine using d-serine dehydratase from Saccharomyces cerevisiae. Anal Biochem371:167–172 [CrossRef][PubMed]
    [Google Scholar]
  21. Ito T., Murase H., Maekawa M., Goto M., Hayashi S., Saito H., Maki M., Hemmi H., Yoshimura T.. 2012; Metal ion dependency of serine racemase from Dictyostelium discoideum. Amino Acids43:1567–1576 [CrossRef][PubMed]
    [Google Scholar]
  22. Kaiser K., Benner R.. 2008; Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr53:99–112 [CrossRef]
    [Google Scholar]
  23. Karpeisky M., Dixon H.B.F.. 1986; Vitamin B6 Pyridoxal Phosphate: Chemical, Biochemical, and Medical Aspects, Part B pp76–116 Edited by Dolphin D., Poulson R., Avramovic O.. New York: John Wiley & Sons;
    [Google Scholar]
  24. Kawasaki N., Benner R.. 2006; Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr51:2170–2180 [CrossRef]
    [Google Scholar]
  25. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  26. Lomstein B. A., Jørgensen N.O.G.. 2001; Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr46:1358–1369 [CrossRef]
    [Google Scholar]
  27. Lomstein B. A., Jørgensen B. B., Schubert C. J., Niggemann J.. 2006; Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Acta70:2970–2989 [CrossRef]
    [Google Scholar]
  28. McCarthy M. D., Hedges J. I., Benner R.. 1998; Major bacterial contribution to marine dissolved organic nitrogen. Science281:231–234 [CrossRef][PubMed]
    [Google Scholar]
  29. Michard E., Lima P. T., Borges F., Silva A. C., Portes M. T., Carvalho J. E., Gilliham M., Liu L. H., Obermeyer G., Feijó J. A.. 2011; Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil d-serine. Science332:434–437 [CrossRef][PubMed]
    [Google Scholar]
  30. Morikawa M., Daido H., Takao T., Murata S., Shimonishi Y., Imanaka T.. 1993; A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol175:6459–6466[PubMed]
    [Google Scholar]
  31. Murakami T., Maeda T., Yokota A., Wada M.. 2009; Gene cloning and expression of pyridoxal 5′-phosphate-dependent L-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62, and characterization of the recombinant enzyme. J Biochem145:661–668 [CrossRef][PubMed]
    [Google Scholar]
  32. Pollock G. E., Cheng C. N., Cronin S. E.. 1977; Determination of the d l isomers of some protein amino acids present in soils. Anal Chem49:2–7 [CrossRef][PubMed]
    [Google Scholar]
  33. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  34. Sasabe J., Chiba T., Yamada M., Okamoto K., Nishimoto I., Matsuoka M., Aiso S.. 2007; d-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J26:4149–4159 [CrossRef][PubMed]
    [Google Scholar]
  35. Smith M. A., Mack V., Ebneth A., Moraes I., Felicetti B., Wood M., Schonfeld D., Mather O., Cesura A., Barker J.. 2010; The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding. J Biol Chem285:12873–12881 [CrossRef][PubMed]
    [Google Scholar]
  36. Soda K.. 1967; A spectrophotometric microdetermination of keto acids with 3-methyl-2-benzothiazolone hydrazone. Anal Biochem31:1054–1060
    [Google Scholar]
  37. Strísovský K., Jirásková J., Mikulová A., Rulísek L., Konvalinka J.. 2005; Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry44:13091–13100 [CrossRef][PubMed]
    [Google Scholar]
  38. Wada M., Nakamori S., Takagi H.. 2003; Serine racemase homologue of Saccharomyces cerevisiae has l-threo-3-hydroxyaspartate dehydratase activity. FEMS Microbiol Lett225:189–193 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoshimura T., Esak N.. 2003; Amino acid racemases: functions and mechanisms. J Biosci Bioeng96:103–109 [CrossRef][PubMed]
    [Google Scholar]
  40. Yoshimura T., Goto M.. 2008; d-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J275:3527–3537 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000200
Loading
/content/journal/micro/10.1099/mic.0.000200
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error