1887

Abstract

is a neutrophilic enteric pathogen that is extremely sensitive to acid. As passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the acid tolerance response. A key component of the acid tolerance response is the system, which is encoded by and the operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the acid tolerance response. Transcriptional reporter assays revealed that expression repressed transcription, indicating that LeuO was a repressor. Consistent with this, expression was inversely linked to lysine decarboxylase production and overexpression resulted in increased sensitivity to organic acids. Overexpression of in a mutant potentiated killing by organic acids, suggesting that the function of in the acid tolerance response extended beyond its regulation of the system. Collectively, these studies have identified a new physiological role for LeuO in acid tolerance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000194
2015-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2434.html?itemId=/content/journal/micro/10.1099/mic.0.000194&mimeType=html&fmt=ahah

References

  1. Alam A., Larocque R. C., Harris J. B., Vanderspurt C., Ryan E. T., Qadri F., Calderwood S. B.. ( 2005;). Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect Immun 73: 6674–6679 [CrossRef] [PubMed].
    [Google Scholar]
  2. Angelichio M. J., Merrell D. S., Camilli A.. ( 2004;). Spatiotemporal analysis of acid adaptation-mediated Vibrio cholerae hyperinfectivity. Infect Immun 72: 2405–2407 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ante V. M., Bina X. R., Howard M. F., Sayeed S., Bina J. E.. ( 2015;). Vibrio cholerae leuO transcription is positively regulated by ToxR and contributes to bile resistance. J Bacteriol 197: 3499–3510 [CrossRef] [PubMed].
    [Google Scholar]
  4. Audia J. P., Webb C. C., Foster J. W.. ( 2001;). Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291: 97–106 [CrossRef] [PubMed].
    [Google Scholar]
  5. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 0008 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bearson S., Bearson B., Foster J. W.. ( 1997;). Acid stress responses in enterobacteria. FEMS Microbiol Lett 147: 173–180 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bina X. R., Bina J. E.. ( 2010;). The cyclic dipeptide cyclo(Phe-Pro) inhibits cholera toxin and toxin-coregulated pilus production in O1 El Tor Vibrio cholerae. J Bacteriol 192: 3829–3832 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bina J. E., Mekalanos J. J.. ( 2001;). Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69: 4681–4685 [CrossRef] [PubMed].
    [Google Scholar]
  9. Bina J. E., Provenzano D., Wang C., Bina X. R., Mekalanos J. J.. ( 2006;). Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186: 171–181 [CrossRef] [PubMed].
    [Google Scholar]
  10. Bina X. R., Taylor D. L., Vikram A., Ante V. M., Bina J. E.. ( 2013;). Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo(Phe-Pro). MBio 4: e00366–e00313 [CrossRef] [PubMed].
    [Google Scholar]
  11. Booth I. R.. ( 1985;). Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 359–378 [PubMed].
    [Google Scholar]
  12. Cameron D. E., Urbach J. M., Mekalanos J. J.. ( 2008;). A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci U S A 105: 8736–8741 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ding Y., Waldor M. K.. ( 2003;). Deletion of a Vibrio cholerae ClC channel results in acid sensitivity and enhanced intestinal colonization. Infect Immun 71: 4197–4200 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fullner K. J., Mekalanos J. J.. ( 1999;). Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 67: 1393–1404 [PubMed].
    [Google Scholar]
  15. Goforth J. B., Walter N. E., Karatan E.. ( 2013;). Effects of polyamines on Vibrio cholerae virulence properties. PLoS One 8: e60765 [CrossRef] [PubMed].
    [Google Scholar]
  16. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130 [PubMed].
    [Google Scholar]
  17. He Y., Kashiwagi K., Fukuchi J., Terao K., Shirahata A., Igarashi K.. ( 1993;). Correlation between the inhibition of cell growth by accumulated polyamines and the decrease of magnesium and ATP. Eur J Biochem 217: 89–96 [CrossRef] [PubMed].
    [Google Scholar]
  18. Imai Y., Matsushima Y., Sugimura T., Terada M.. ( 1991;). A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 19: 2785 [CrossRef] [PubMed].
    [Google Scholar]
  19. Iwanaga M., Yamamoto K., Higa N., Ichinose Y., Nakasone N., Tanabe M.. ( 1986;). Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol Immunol 30: 1075–1083 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim J. A., Park J. H., Lee M. A., Lee H. J., Park S. J., Kim K. S., Choi S. H., Lee K. H.. ( 2015;). Stationary-phase induction of vvpS expression by three transcription factors: repression by LeuO and activation by SmcR and CRP. Mol Microbiol 97: 330–346 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kovacikova G., Lin W., Skorupski K.. ( 2010;). The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol 192: 4181–4191 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lemonnier M., Lane D.. ( 1998;). Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144: 751–760 [CrossRef] [PubMed].
    [Google Scholar]
  23. Leyer G. J., Johnson E. A.. ( 1993;). Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59: 1842–1847 [PubMed].
    [Google Scholar]
  24. Linn T., St Pierre R.. ( 1990;). Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172: 1077–1084 [PubMed].
    [Google Scholar]
  25. Maddocks S. E., Oyston P. C.. ( 2008;). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609–3623 [CrossRef] [PubMed].
    [Google Scholar]
  26. Merrell D. S., Camilli A.. ( 1999;). The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 34: 836–849 [CrossRef] [PubMed].
    [Google Scholar]
  27. Merrell D. S., Camilli A.. ( 2000;). Regulation of Vibrio cholerae genes required for acid tolerance by a member of the ToxR-like family of transcriptional regulators. J Bacteriol 182: 5342–5350 [CrossRef] [PubMed].
    [Google Scholar]
  28. Merrell D. S., Bailey C., Kaper J. B., Camilli A.. ( 2001;). The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol 183: 2746–2754 [CrossRef] [PubMed].
    [Google Scholar]
  29. Merrell D. S., Butler M. S., Qadri F., Dolganov N. A., Alam A., Cohen M. B., Calderwood S. B., Schoolnik G. K., Camilli A.. ( 2002;). Host-induced epidemic spread of the cholera bacterium. Nature 417: 642–645 [CrossRef] [PubMed].
    [Google Scholar]
  30. Merrell D. S., Hava D. L., Camilli A.. ( 2002;). Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43: 1471–1491 [CrossRef] [PubMed].
    [Google Scholar]
  31. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L.. ( 1996;). Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  32. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  33. Moorthy S., Watnick P. I.. ( 2005;). Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 57: 1623–1635 [CrossRef] [PubMed].
    [Google Scholar]
  34. Reimer A. R., Van Domselaar G., Stroika S., Walker M., Kent H., Tarr C., Talkington D., Rowe L., Olsen-Rasmussen M., other authors. ( 2011;). Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 17: 2113–2121 [CrossRef] [PubMed].
    [Google Scholar]
  35. Shi X., Bennett G. N.. ( 1995;). Effects of multicopy LeuO on the expression of the acid-inducible lysine decarboxylase gene in Escherichia coli. J Bacteriol 177: 810–814 [PubMed].
    [Google Scholar]
  36. Shimada T., Bridier A., Briandet R., Ishihama A.. ( 2011;). Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 82: 378–397 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tabor C. W., Tabor H.. ( 1985;). Polyamines in microorganisms. Microbiol Rev 49: 81–99 [PubMed].
    [Google Scholar]
  38. Tamayo R., Patimalla B., Camilli A.. ( 2010;). Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 78: 3560–3569 [CrossRef] [PubMed].
    [Google Scholar]
  39. Thelin K. H., Taylor R. K.. ( 1996;). Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64: 2853–2856 [PubMed].
    [Google Scholar]
  40. Wachsmuth K., Blake P. A., Olsvik Ø.. ( 1994;). Vibrio Cholerae and Cholera: Molecular to Global Perspectives Washington, DC:: [CrossRef] American Society for Microbiology;.
    [Google Scholar]
  41. Whitaker W. B., Parent M. A., Boyd A., Richards G. P., Boyd E. F.. ( 2012;). The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 80: 1834–1845 [CrossRef] [PubMed].
    [Google Scholar]
  42. Zhu J., Mekalanos J. J.. ( 2003;). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5: 647–656 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000194
Loading
/content/journal/micro/10.1099/mic.0.000194
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error