1887

Abstract

utilizes 3′,5′-cyclic guanosine monophosphate (cGMP) as a messenger to regulate development of desiccation-resistant cysts. In this study, we demonstrated that and coding for putative subunits of a guanylyl cyclase, increase expression from 8- to 500-fold when cells transition from vegetative to cyst phases of growth. This induction did not occur in a strain that is defective in cGMP synthesis or in a strain that contains a deletion of that codes for a cGMP-binding homologue of catabolite repressor protein (CRP). We also demonstrated that auto-induces its own expression in the presence of cGMP, indicating that a feed-forward loop is used to ramp up cGMP production as cells undergo encystment. Inspection of an intragenic region upstream of revealed a sequence that is identical to the CRP consensus sequence from . DNase I and fluorescence anisotropy analyses demonstrated that CgrA bound to this target sequence at a protein : cGMP ratio of 1 : 2 with ∼61 nM. This was in contrast to CgrA in the presence of cAMP, which exhibited ∼1795 nM. CgrA thus constitutes a novel variant of CRP that utilizes cGMP to regulate production of cGMP synthase for the control of cyst development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000172
2015-11-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2256.html?itemId=/content/journal/micro/10.1099/mic.0.000172&mimeType=html&fmt=ahah

References

  1. Aiba H.. ( 1983;). Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene. Cell 32: 141–149 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aiba H.. ( 1985;). Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein. J Biol Chem 260: 3063–3070 [PubMed].
    [Google Scholar]
  3. Aiba H.. ( 1986;). Negative control of transcription by cAMP and cAMP receptor protein in Escherichia coli. Adv Biophys 21: 193–204 [CrossRef] [PubMed].
    [Google Scholar]
  4. An S.Q., Chin K.H., Febrer M., McCarthy Y., Yang J.G., Liu C.L., Swarbreck D., Rogers J., Maxwell Dow J., other authors. ( 2013;). A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. EMBO J 32: 2430–2438 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bashan Y., Holguin G., de-Bashan L.E.. ( 2004;). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50: 521–577 [CrossRef] [PubMed].
    [Google Scholar]
  6. Berleman J.E., Bauer C.E.. ( 2004;). Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenum. Microbiology 150: 383–390 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bian J., Liu X., Cheng Y.-Q., Li C.. ( 2013;). Inactivation of cyclic di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J Bacteriol 195: 3897–3905 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cadoret J.C., Rousseau B., Perewoska I., Sicora C., Cheregi O., Vass I., Houmard J.. ( 2005;). Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280: 33935–33944 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chin K.H., Lee Y.C., Tu Z.L., Chen C.H., Tseng Y.H., Yang J.M., Ryan R.P., McCarthy Y., Dow J.M., other authors. ( 2010;). The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396: 646–662 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cossart P., Gicquel-Sanzey B.. ( 1985;). Regulation of expression of the crp gene of Escherichia coli K-12: in vivo study. J Bacteriol 161: 454–457 [PubMed].
    [Google Scholar]
  11. Crack J., Green J., Thomson A.J.. ( 2004;). Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279: 9278–9286 [CrossRef] [PubMed].
    [Google Scholar]
  12. Din N., Shoemaker C.J., Akin K.L., Frederick C., Bird T.H.. ( 2011;). Two putative histidine kinases are required for cyst formation in Rhodospirillum centenum. Arch Microbiol 193: 209–222 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dong Q., Bauer C.E.. ( 2015;). Transcriptome analysis of cyst formation in Rhodospirillum centenum reveals large global changes in expression during cyst development. BMC Genomics 16: 68 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fani R., Bandi C., Bazzicalupo M., Ceccherini M.T., Fancelli S., Gallori E., Gerace L., Grifoni A., Miclaus N., Damiani G.. ( 1995;). Phylogeny of the genus Azospirillum based on 16S rDNA sequence. FEMS Microbiol Lett 129: 195–200 [PubMed].
    [Google Scholar]
  15. Feucht B.U., Saier M.H. Jr. ( 1980;). Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol 141: 603–610 [PubMed].
    [Google Scholar]
  16. Gomelsky M.. ( 2011;). cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all!. Mol Microbiol 79: 562–565 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gomelsky M., Galperin M.Y.. ( 2013;). Bacterial second messengers, cGMP and c-di-GMP, in a quest for regulatory dominance. EMBO J 32: 2421–2423 [CrossRef] [PubMed].
    [Google Scholar]
  18. Görke B., Stülke J.. ( 2008;). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613–624 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hanamura A., Aiba H.. ( 1992;). A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulation. Mol Microbiol 6: 2489–2497 [CrossRef] [PubMed].
    [Google Scholar]
  20. Harman J.G.. ( 2001;). Allosteric regulation of the cAMP receptor protein. Biochim Biophys Acta 1547: 1–17 [CrossRef] [PubMed].
    [Google Scholar]
  21. Harwood J.P., Gazdar C., Prasad C., Peterkofsky A., Curtis S.J., Epstein W.. ( 1976;). Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. J Biol Chem 251: 2462–2468 [PubMed].
    [Google Scholar]
  22. He K., Bauer C.E.. ( 2014;). Chemosensory signaling systems that control bacterial survival. Trends Microbiol 22: 389–398 [CrossRef] [PubMed].
    [Google Scholar]
  23. He K., Marden J.N., Quardokus E.M., Bauer C.E.. ( 2013;). Phosphate flow between hybrid histidine kinases CheA3 and CheS3 controls Rhodospirillum centenum cyst formation. PLoS Genet 9: e1004002 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ishizuka H., Hanamura A., Inada T., Aiba H.. ( 1994;). Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J 13: 3077–3082 [PubMed].
    [Google Scholar]
  25. Kim J., Adhya S., Garges S.. ( 1992;). Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci U S A 89: 9700–9704 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kolb A., Busby S., Buc H., Garges S., Adhya S.. ( 1993;). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62: 749–797 [CrossRef] [PubMed].
    [Google Scholar]
  27. Körner H., Sofia H.J., Zumft W.G.. ( 2003;). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lawson C.L., Swigon D., Murakami K.S., Darst S.A., Berman H.M., Ebright R.H.. ( 2004;). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14: 10–20 [CrossRef] [PubMed].
    [Google Scholar]
  29. Leduc J.L., Roberts G.P.. ( 2009;). Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191: 7121–7122 [CrossRef] [PubMed].
    [Google Scholar]
  30. Marden J.N., Dong Q., Roychowdhury S., Berleman J.E., Bauer C.E.. ( 2011;). Cyclic GMP controls Rhodospirillum centenum cyst development. Mol Microbiol 79: 600–615 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mori K., Aiba H.. ( 1985;). Evidence for negative control of cya transcription by cAMP and cAMP receptor protein in intact Escherichia coli cells. J Biol Chem 260: 14838–14843 [PubMed].
    [Google Scholar]
  32. Österberg S., Åberg A., Herrera Seitz M.K., Wolf-Watz M., Shingler V.. ( 2013;). Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putida. Environ Microbiol Rep 5: 556–565 [CrossRef] [PubMed].
    [Google Scholar]
  33. Passner J.M., Schultz S.C., Steitz T.A.. ( 2000;). Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J Mol Biol 304: 847–859 [CrossRef] [PubMed].
    [Google Scholar]
  34. Pfaffl M.W., Tichopád A., Prgomet C., Neuvians T.P.. ( 2004;). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 509–515 [CrossRef] [PubMed].
    [Google Scholar]
  35. Popovych N., Tzeng S.R., Tonelli M., Ebright R.H., Kalodimos C.G.. ( 2009;). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A 106: 6927–6932 [CrossRef] [PubMed].
    [Google Scholar]
  36. Postma P.W., Lengeler J.W., Jacobson G.R.. ( 1993;). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594 [PubMed].
    [Google Scholar]
  37. Rauch A., Leipelt M., Russwurm M., Steegborn C.. ( 2008;). Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci U S A 105: 15720–15725 [CrossRef] [PubMed].
    [Google Scholar]
  38. Ryu M.-H., Youn H., Kang I.H., Gomelsky M.. ( 2015;). Identification of bacterial guanylate cyclases. Proteins 83: 799–804 [CrossRef] [PubMed].
    [Google Scholar]
  39. Sharma H., Yu S., Kong J., Wang J., Steitz T.A.. ( 2009;). Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A 106: 16604–16609 [CrossRef] [PubMed].
    [Google Scholar]
  40. Shelver D., Kerby R.L., He Y., Roberts G.P.. ( 1995;). Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 177: 2157–2163 [PubMed].
    [Google Scholar]
  41. Shelver D., Kerby R.L., He Y., Roberts G.P.. ( 1997;). CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc Natl Acad Sci U S A 94: 11216–11220 [CrossRef] [PubMed].
    [Google Scholar]
  42. Shimada T., Fujita N., Yamamoto K., Ishihama A.. ( 2011;). Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 6: e20081 [CrossRef] [PubMed].
    [Google Scholar]
  43. Spiro S., Guest J.R.. ( 1990;). FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev 6: 399–428 [PubMed].
    [Google Scholar]
  44. Stadtwald-Demchick R., Turner F.R., Gest H.. ( 1990;). Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67: 139–143 [CrossRef].
    [Google Scholar]
  45. Tao F., He Y.W., Wu D.H., Swarup S., Zhang L.H.. ( 2010;). The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192: 1020–1029 [CrossRef] [PubMed].
    [Google Scholar]
  46. Willett J., Smart J.L., Bauer C.E.. ( 2007;). RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 189: 7765–7773 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zumft W.G.. ( 2002;). Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol 4: 277–286 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000172
Loading
/content/journal/micro/10.1099/mic.0.000172
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error