utilizes 3′,5′-cyclic guanosine monophosphate (cGMP) as a messenger to regulate development of desiccation-resistant cysts. In this study, we demonstrated that and coding for putative subunits of a guanylyl cyclase, increase expression from 8- to 500-fold when cells transition from vegetative to cyst phases of growth. This induction did not occur in a strain that is defective in cGMP synthesis or in a strain that contains a deletion of that codes for a cGMP-binding homologue of catabolite repressor protein (CRP). We also demonstrated that auto-induces its own expression in the presence of cGMP, indicating that a feed-forward loop is used to ramp up cGMP production as cells undergo encystment. Inspection of an intragenic region upstream of revealed a sequence that is identical to the CRP consensus sequence from . DNase I and fluorescence anisotropy analyses demonstrated that CgrA bound to this target sequence at a protein : cGMP ratio of 1 : 2 with ∼61 nM. This was in contrast to CgrA in the presence of cAMP, which exhibited ∼1795 nM. CgrA thus constitutes a novel variant of CRP that utilizes cGMP to regulate production of cGMP synthase for the control of cyst development.


Article metrics loading...

Loading full text...

Full text loading...



  1. Aiba H. (1983). Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own geneCell 32141149 [View Article][PubMed]. [Google Scholar]
  2. Aiba H. (1985). Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor proteinJ Biol Chem 26030633070[PubMed]. [Google Scholar]
  3. Aiba H. (1986). Negative control of transcription by cAMP and cAMP receptor protein in Escherichia coliAdv Biophys 21193204 [View Article][PubMed]. [Google Scholar]
  4. An S.Q., Chin K.H., Febrer M., McCarthy Y., Yang J.G., Liu C.L., Swarbreck D., Rogers J., Maxwell Dow J., other authors. (2013). A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesisEMBO J 3224302438 [View Article][PubMed]. [Google Scholar]
  5. Bashan Y., Holguin G., de-Bashan L.E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003)Can J Microbiol 50521577 [View Article][PubMed]. [Google Scholar]
  6. Berleman J.E., Bauer C.E. (2004). Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenumMicrobiology 150383390 [View Article][PubMed]. [Google Scholar]
  7. Bian J., Liu X., Cheng Y.-Q., Li C. (2013). Inactivation of cyclic di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticolaJ Bacteriol 19538973905 [View Article][PubMed]. [Google Scholar]
  8. Cadoret J.C., Rousseau B., Perewoska I., Sicora C., Cheregi O., Vass I., Houmard J. (2005). Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobacterium Synechocystis sp. PCC 6803J Biol Chem 2803393533944 [View Article][PubMed]. [Google Scholar]
  9. Chin K.H., Lee Y.C., Tu Z.L., Chen C.H., Tseng Y.H., Yang J.M., Ryan R.P., McCarthy Y., Dow J.M., other authors. (2010). The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestrisJ Mol Biol 396646662 [View Article][PubMed]. [Google Scholar]
  10. Cossart P., Gicquel-Sanzey B. (1985). Regulation of expression of the crp gene of Escherichia coli K-12: in vivo studyJ Bacteriol 161454457[PubMed]. [Google Scholar]
  11. Crack J., Green J., Thomson A.J. (2004). Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR)J Biol Chem 27992789286 [View Article][PubMed]. [Google Scholar]
  12. Din N., Shoemaker C.J., Akin K.L., Frederick C., Bird T.H. (2011). Two putative histidine kinases are required for cyst formation in Rhodospirillum centenumArch Microbiol 193209222 [View Article][PubMed]. [Google Scholar]
  13. Dong Q., Bauer C.E. (2015). Transcriptome analysis of cyst formation in Rhodospirillum centenum reveals large global changes in expression during cyst developmentBMC Genomics 1668 [View Article][PubMed]. [Google Scholar]
  14. Fani R., Bandi C., Bazzicalupo M., Ceccherini M.T., Fancelli S., Gallori E., Gerace L., Grifoni A., Miclaus N., Damiani G. (1995). Phylogeny of the genus Azospirillum based on 16S rDNA sequenceFEMS Microbiol Lett 129195200[PubMed]. [Google Scholar]
  15. Feucht B.U., Saier M.H. Jr (1980). Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimuriumJ Bacteriol 141603610[PubMed]. [Google Scholar]
  16. Gomelsky M. (2011). cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all!Mol Microbiol 79562565 [View Article][PubMed]. [Google Scholar]
  17. Gomelsky M., Galperin M.Y. (2013). Bacterial second messengers, cGMP and c-di-GMP, in a quest for regulatory dominanceEMBO J 3224212423 [View Article][PubMed]. [Google Scholar]
  18. Görke B., Stülke J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrientsNat Rev Microbiol 6613624 [View Article][PubMed]. [Google Scholar]
  19. Hanamura A., Aiba H. (1992). A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulationMol Microbiol 624892497 [View Article][PubMed]. [Google Scholar]
  20. Harman J.G. (2001). Allosteric regulation of the cAMP receptor proteinBiochim Biophys Acta 1547117 [View Article][PubMed]. [Google Scholar]
  21. Harwood J.P., Gazdar C., Prasad C., Peterkofsky A., Curtis S.J., Epstein W. (1976). Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coliJ Biol Chem 25124622468[PubMed]. [Google Scholar]
  22. He K., Bauer C.E. (2014). Chemosensory signaling systems that control bacterial survivalTrends Microbiol 22389398 [View Article][PubMed]. [Google Scholar]
  23. He K., Marden J.N., Quardokus E.M., Bauer C.E. (2013). Phosphate flow between hybrid histidine kinases CheA3 and CheS3 controls Rhodospirillum centenum cyst formationPLoS Genet 9e1004002 [View Article][PubMed]. [Google Scholar]
  24. Ishizuka H., Hanamura A., Inada T., Aiba H. (1994). Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp geneEMBO J 1330773082[PubMed]. [Google Scholar]
  25. Kim J., Adhya S., Garges S. (1992). Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientationProc Natl Acad Sci U S A 8997009704 [View Article][PubMed]. [Google Scholar]
  26. Kolb A., Busby S., Buc H., Garges S., Adhya S. (1993). Transcriptional regulation by cAMP and its receptor proteinAnnu Rev Biochem 62749797 [View Article][PubMed]. [Google Scholar]
  27. Körner H., Sofia H.J., Zumft W.G. (2003). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programsFEMS Microbiol Rev 27559592 [View Article][PubMed]. [Google Scholar]
  28. Lawson C.L., Swigon D., Murakami K.S., Darst S.A., Berman H.M., Ebright R.H. (2004). Catabolite activator protein: DNA binding and transcription activationCurr Opin Struct Biol 141020 [View Article][PubMed]. [Google Scholar]
  29. Leduc J.L., Roberts G.P. (2009). Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citriJ Bacteriol 19171217122 [View Article][PubMed]. [Google Scholar]
  30. Marden J.N., Dong Q., Roychowdhury S., Berleman J.E., Bauer C.E. (2011). Cyclic GMP controls Rhodospirillum centenum cyst developmentMol Microbiol 79600615 [View Article][PubMed]. [Google Scholar]
  31. Mori K., Aiba H. (1985). Evidence for negative control of cya transcription by cAMP and cAMP receptor protein in intact Escherichia coli cellsJ Biol Chem 2601483814843[PubMed]. [Google Scholar]
  32. Österberg S., Åberg A., Herrera Seitz M.K., Wolf-Watz M., Shingler V. (2013). Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putidaEnviron Microbiol Rep 5556565 [View Article][PubMed]. [Google Scholar]
  33. Passner J.M., Schultz S.C., Steitz T.A. (2000). Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolutionJ Mol Biol 304847859 [View Article][PubMed]. [Google Scholar]
  34. Pfaffl M.W., Tichopád A., Prgomet C., Neuvians T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlationsBiotechnol Lett 26509515 [View Article][PubMed]. [Google Scholar]
  35. Popovych N., Tzeng S.R., Tonelli M., Ebright R.H., Kalodimos C.G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator proteinProc Natl Acad Sci U S A 10669276932 [View Article][PubMed]. [Google Scholar]
  36. Postma P.W., Lengeler J.W., Jacobson G.R. (1993). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteriaMicrobiol Rev 57543594[PubMed]. [Google Scholar]
  37. Rauch A., Leipelt M., Russwurm M., Steegborn C. (2008). Crystal structure of the guanylyl cyclase Cya2Proc Natl Acad Sci U S A 1051572015725 [View Article][PubMed]. [Google Scholar]
  38. Ryu M.-H., Youn H., Kang I.H., Gomelsky M. (2015). Identification of bacterial guanylate cyclasesProteins 83799804 [View Article][PubMed]. [Google Scholar]
  39. Sharma H., Yu S., Kong J., Wang J., Steitz T.A. (2009). Structure of apo-CAP reveals that large conformational changes are necessary for DNA bindingProc Natl Acad Sci U S A 1061660416609 [View Article][PubMed]. [Google Scholar]
  40. Shelver D., Kerby R.L., He Y., Roberts G.P. (1995). Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulatorsJ Bacteriol 17721572163[PubMed]. [Google Scholar]
  41. Shelver D., Kerby R.L., He Y., Roberts G.P. (1997). CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme proteinProc Natl Acad Sci U S A 941121611220 [View Article][PubMed]. [Google Scholar]
  42. Shimada T., Fujita N., Yamamoto K., Ishihama A. (2011). Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sourcesPLoS One 6e20081 [View Article][PubMed]. [Google Scholar]
  43. Spiro S., Guest J.R. (1990). FNR and its role in oxygen-regulated gene expression in Escherichia coliFEMS Microbiol Rev 6399428[PubMed]. [Google Scholar]
  44. Stadtwald-Demchick R., Turner F.R., Gest H. (1990). Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenumFEMS Microbiol Lett 67139143 [View Article]. [Google Scholar]
  45. Tao F., He Y.W., Wu D.H., Swarup S., Zhang L.H. (2010). The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectorsJ Bacteriol 19210201029 [View Article][PubMed]. [Google Scholar]
  46. Willett J., Smart J.L., Bauer C.E. (2007). RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatusJ Bacteriol 18977657773 [View Article][PubMed]. [Google Scholar]
  47. Zumft W.G. (2002). Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator familyJ Mol Microbiol Biotechnol 4277286[PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error