1887

Abstract

Lactococcin Q is a two-peptide (Qα and Qβ) bacteriocin produced by QU 4, which exhibits specific antimicrobial activity against . strains. The lactococcin Q gene cluster (approximately 4.5 kb) was sequenced and found to include genes encoding lactococcin Q immunity (), an ATP-binding cassette transporter () and a transport accessory protein (), downstream of the lactococcin Q structural genes ( and ). In addition, the gene cluster showed high sequence identity with that of a lactococcin Q homologue bacteriocin, lactococcin G. Heterologous expression studies showed that LaqD was responsible for lactococcin Q secretion in a manner dependent on LaqE expression, and that LaqC conferred self-immunity to lactococcin Q and cross-immunity to lactococcin G. Amino acid alignment of both lactococcin transporters revealed that LaqD contains an insertion (160–168 residues) that is essential for lactococcin Q secretion, as cells that expressed LaqD were devoid of this function. Additional experiments demonstrated that the LaqD mutant was, however, able to secrete lactococcin G, suggesting that the insertion is necessary only for the lactococcin Q secretion by LaqD. This report demonstrates the biosynthetic mechanism of lactococcin Q/G-type bacteriocins and the complementarity of the genes responsible for the secretion of lactococcins Q and G.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000157
2015-11-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2069.html?itemId=/content/journal/micro/10.1099/mic.0.000157&mimeType=html&fmt=ahah

References

  1. Asaduzzaman S.M., Sonomoto K. (2009). Lantibiotics: diverse activities and unique modes of actionJ Biosci Bioeng 107475487 [View Article][PubMed]. [Google Scholar]
  2. Axelsson L., Holck A. (1995). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706J Bacteriol 17721252137[PubMed]. [Google Scholar]
  3. Bennallack P.R., Burt S.R., Heder M.J., Robison R.A., Griffitts J.S. (2014). Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115J Bacteriol 19643444350 [View Article][PubMed]. [Google Scholar]
  4. Chopin A., Chopin M.C., Moillo-Batt A., Langella P. (1984). Two plasmid-determined restriction and modification systems in Streptococcus lactisPlasmid 11260263 [View Article][PubMed]. [Google Scholar]
  5. Cotter P.D., Hill C., Ross R.P. (2005). Bacteriocins: developing innate immunity for foodNat Rev Microbiol 3777788 [View Article][PubMed]. [Google Scholar]
  6. Diep D.B., Skaugen M., Salehian Z., Holo H., Nes I.F. (2007). Common mechanisms of target cell recognition and immunity for class II bacteriocinsProc Natl Acad Sci U S A 10423842389 [View Article][PubMed]. [Google Scholar]
  7. Drider D., Fimland G., Héchard Y., McMullen L.M., Prévost H. (2006). The continuing story of class IIa bacteriocinsMicrobiol Mol Biol Rev 70564582 [View Article][PubMed]. [Google Scholar]
  8. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. (2000). Class IIa bacteriocins: biosynthesis, structure and activityFEMS Microbiol Rev 2485106 [View Article][PubMed]. [Google Scholar]
  9. Ennahar S., Asou Y., Zendo T., Sonomoto K., Ishizaki A. (2001). Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81Int J Food Microbiol 70291301 [View Article][PubMed]. [Google Scholar]
  10. Håvarstein L.S., Diep D.B., Nes I.F. (1995). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with exportMol Microbiol 16229240 [View Article][PubMed]. [Google Scholar]
  11. Ishibashi N., Himeno K., Masuda Y., Perez R.H., Iwatani S., Zendo T., Wilaipun P., Leelawatcharamas V., Nakayama J., Sonomoto K. (2014). Gene cluster responsible for secretion of and immunity to multiple bacteriocins, the NKR-5-3 enterocinsAppl Environ Microbiol 8066476655 [View Article][PubMed]. [Google Scholar]
  12. Iwatani S., Zendo T., Sonomoto K. (2011). Class IId or linear and non-pediocin-like bacteriocins. In Prokaryotic Antimicrobial Peptides, pp. 237252. Edited by Drider D., Rebuffat S.New YorkSpringer [View Article]. [Google Scholar]
  13. Kjos M., Oppegård C., Diep D.B., Nes I.F., Veening J.W., Nissen-Meyer J., Kristensen T. (2014). Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesisMol Microbiol 9211771187 [View Article][PubMed]. [Google Scholar]
  14. Klaenhammer T.R. (1993). Genetics of bacteriocins produced by lactic acid bacteriaFEMS Microbiol Rev 123985 [View Article][PubMed]. [Google Scholar]
  15. Kuipers O.P., de Ruyter P.G.G.A., Kleerebezem M., de Vos W.M. (1998). Quorum sensing-controlled gene expression in lactic acid bacteriaJ Biotechnol 641521 [View Article]. [Google Scholar]
  16. Li Y.-H., Tang N., Aspiras M.B., Lau P.C.Y., Lee J.H., Ellen R.P., Cvitkovitch D.G. (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formationJ Bacteriol 18426992708 [View Article][PubMed]. [Google Scholar]
  17. Moll G., Ubbink-Kok T., Hildeng-Hauge H., Nissen-Meyer J., Nes I.F., Konings W.N., Driessen A.J. (1996). Lactococcin G is a potassium ion-conducting, two-component bacteriocinJ Bacteriol 178600605[PubMed]. [Google Scholar]
  18. Nes I.F., Diep D.B., Håvarstein L.S., Brurberg M.B., Eijsink V., Holo H. (1996). Biosynthesis of bacteriocins in lactic acid bacteriaAntonie van Leeuwenhoek 70113128 [View Article][PubMed]. [Google Scholar]
  19. Nissen-Meyer J., Holo H., Håvarstein L.S., Sletten K., Nes I.F. (1992). A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptidesJ Bacteriol 17456865692[PubMed]. [Google Scholar]
  20. Nissen-Meyer J., Rogne P., Oppegård C., Haugen H.S., Kristiansen P.E. (2009). Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteriaCurr Pharm Biotechnol 101937 [View Article][PubMed]. [Google Scholar]
  21. Nissen-Meyer J., Oppegård C., Rogne P., Haugen H.S., Kristiansen P.E. (2010). Structure and mode-of-action of the two-peptide (class-IIb) bacteriocinsProbiotics Antimicrob Proteins 25260 [View Article][PubMed]. [Google Scholar]
  22. O'Keeffe T., Hill C., Ross R.P. (1999). Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146Appl Environ Microbiol 6515061515[PubMed]. [Google Scholar]
  23. Oppegård C., Fimland G., Thorbaek L., Nissen-Meyer J. (2007a). Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesisAppl Environ Microbiol 7329312938 [View Article][PubMed]. [Google Scholar]
  24. Oppegård C., Rogne P., Emanuelsen L., Kristiansen P.E., Fimland G., Nissen-Meyer J. (2007b). The two-peptide class II bacteriocins: structure, production, and mode of actionJ Mol Microbiol Biotechnol 13210219 [View Article][PubMed]. [Google Scholar]
  25. Oppegård C., Schmidt J., Kristiansen P.E., Nissen-Meyer J. (2008). Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin GBiochemistry 4752425249 [View Article][PubMed]. [Google Scholar]
  26. Oppegård C., Emanuelsen L., Thorbek L., Fimland G., Nissen-Meyer J. (2010). The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin GAppl Environ Microbiol 7612671273 [View Article][PubMed]. [Google Scholar]
  27. Oppegård C., Fimland G., Anonsen J.H., Nissen-Meyer J. (2015). The pediocin PA-1 accessory protein ensures correct disulfide bond formation in the antimicrobial peptide pediocin PA-1Biochemistry 5429672974 [View Article][PubMed]. [Google Scholar]
  28. Pal G., Srivastava S. (2015). In vitro activity of a recombinant ABC transporter protein in the processing of plantaricin E pre-peptideArch Microbiol 197843849 [View Article][PubMed]. [Google Scholar]
  29. Perez R.H., Zendo T., Sonomoto K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applicationsMicrob Cell Fact 13S3 [View Article][PubMed]. [Google Scholar]
  30. Petersen F.C., Scheie A.A. (2000). Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatusOral Microbiol Immunol 15329334 [View Article][PubMed]. [Google Scholar]
  31. Sambrook J., Russell D.W. (2001). Molecular Cloning: a Laboratory Manual3rd ednCold Spring Harbor, NYCold Spring Harbor Laboratory. [Google Scholar]
  32. van Belkum M.J., Stiles M.E. (1995). Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidumAppl Environ Microbiol 6135733579[PubMed]. [Google Scholar]
  33. van de Guchte M., van der Vossen J.M., Kok J., Venema G. (1989). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactisAppl Environ Microbiol 55224228[PubMed]. [Google Scholar]
  34. Venema K., Kok J., Marugg J.D., Toonen M.Y., Ledeboer A.M., Venema G., Chikindas M.L. (1995). Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzymeMol Microbiol 17515522 [View Article][PubMed]. [Google Scholar]
  35. Zendo T., Koga S., Shigeri Y., Nakayama J., Sonomoto K. (2006). Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4Appl Environ Microbiol 7233833389 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000157
Loading
/content/journal/micro/10.1099/mic.0.000157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error