1887

Abstract

The Gram-positive co-metabolizes most carbon sources such as the phosphotransferase system (PTS) sugar glucose and the non-PTS sugar maltose. Maltose is taken up via the ABC-transporter MusEFGKI, and is further metabolized to glucose phosphate by amylomaltase MalQ, maltodextrin phosphorylase MalP, glucokinase Glk and phosophoglucomutase Pgm. Surprisingly, growth of strains lacking the general PTS components EI or HPr was strongly impaired on the non-PTS sugar maltose. Complementation experiments showed that a functional PTS phosphorelay is required for optimal growth of on maltose, implying its involvement in the control of maltose metabolism and/or uptake. To identify the target of this PTS-dependent control, transport measurements with C-labelled maltose, Northern blot analyses and enzyme assays were performed. The activities of the maltose transporter and enzymes MalQ, Pgm and GlK were not decreased in PTS-deficient strains, which was corroborated by comparable transcript amounts of , and , as well as of , in Δ and WT. By contrast, MalP activity was significantly reduced and only residual amounts of transcripts were detected in Δ when compared to WT. Promoter activity assays with the promoter in Δ and WT confirmed that transcription is reduced in the PTS-deficient strain. Taken together, we show here for what is to the best of our knowledge the first time a regulatory function of the PTS in and identify transcription as its target.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000134
2015-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1830.html?itemId=/content/journal/micro/10.1099/mic.0.000134&mimeType=html&fmt=ahah

References

  1. Alpert C. A., Frank R., Stüber K., Deutscher J., Hengstenberg W.. ( 1985;). Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center. Biochemistry 24: 959–964 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Arndt A., Eikmanns B. J.. ( 2008;). Regulation of carbon metabolism in Corynebacterium glutamicum. . In Corynebacteria: Genomics and Molecuar Biology, pp. 155–182. Edited by Burkovski A.. Norfolk, UK: Caister Academic Press;.
    [Google Scholar]
  4. Bao H., Duong F.. ( 2013;). Phosphatidylglycerol directs binding and inhibitory action of EIIAGlc protein on the maltose transporter. J Biol Chem 288: 23666–23674 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blüschke B., Volkmer-Engert R., Schneider E.. ( 2006;). Topography of the surface of the signal-transducing protein EIIA(Glc) that interacts with the MalK subunits of the maltose ATP-binding cassette transporter (MalFGK2) of Salmonella typhimurium. J Biol Chem 281: 12833–12840 [CrossRef] [PubMed].
    [Google Scholar]
  6. Böhm A., Diez J., Diederichs K., Welte W., Boos W.. ( 2002;). Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly. J Biol Chem 277: 3708–3717 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bott M., Brocker M.. ( 2012;). Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 94: 1131–1150 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cao Y., Jin X., Levin E. J., Huang H., Zong Y., Quick M., Weng J., Pan Y., Love J., other authors. ( 2011;). Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473: 50–54 [CrossRef] [PubMed].
    [Google Scholar]
  9. Charrier V., Deutscher J., Galinier A., Martin-Verstraete I.. ( 1997;). Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Biochemistry 36: 1163–1172 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chen S., Oldham M. L., Davidson A. L., Chen J.. ( 2013;). Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499: 364–368 [CrossRef] [PubMed].
    [Google Scholar]
  11. Clermont L., Macha A., Müller L. M., Derya S. M., von Zaluskowski P., Eck A., Eikmanns B. J., Seibold G. M.. ( 2015;). The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 197: 1394–1407 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dean D. A., Reizer J., Nikaido H., Saier M. H. Jr. ( 1990;). Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J Biol Chem 265: 21005–21010.
    [Google Scholar]
  13. Débarbouillé M., Martin-Verstraete I., Klier A., Rapoport G.. ( 1991;). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A 88: 2212–2216 [CrossRef] [PubMed].
    [Google Scholar]
  14. Deutscher J.. ( 2008;). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11: 87–93 [CrossRef] [PubMed].
    [Google Scholar]
  15. Deutscher J., Saier M. H. Jr. ( 1983;). ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A 80: 6790–6794 [CrossRef] [PubMed].
    [Google Scholar]
  16. Deutscher J., Kessler U., Alpert C. A., Hengstenberg W.. ( 1984;). Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?. Biochemistry 23: 4455–4460 [CrossRef] [PubMed].
    [Google Scholar]
  17. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70: 939–1031 [CrossRef] [PubMed].
    [Google Scholar]
  18. Deutscher J., Aké F. M., Derkaoui M., Zébré A. C., Cao T. N., Bouraoui H., Kentache T., Mokhtari A., Milohanic E., Joyet P.. ( 2014;). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78: 231–256 [CrossRef] [PubMed].
    [Google Scholar]
  19. Dippel R., Bergmiller T., Böhm A., Boos W.. ( 2005;). The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 187: 8332–8339 [CrossRef] [PubMed].
    [Google Scholar]
  20. Dörschug M., Frank R., Kalbitzer H. R., Hengstenberg W., Deutscher J.. ( 1984;). Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. Eur J Biochem 144: 113–119 [CrossRef] [PubMed].
    [Google Scholar]
  21. Dower W. J., Miller J. F., Ragsdale C. W.. ( 1988;). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127–6145 [CrossRef] [PubMed].
    [Google Scholar]
  22. Eggeling L., Bott M.. (editors) ( 2005;). Handbook of Corynebacterium glutamicum Boca Raton, Fl: CRC Press; [CrossRef].
    [Google Scholar]
  23. Ehrmann M., Boos W.. ( 1987;). Identification of endogenous inducers of the mal regulon in Escherichia coli. J Bacteriol 169: 3539–3545.
    [Google Scholar]
  24. Eikmanns B. J., Kleinertz E., Liebl W., Sahm H.. ( 1991a;). A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93–98 [CrossRef] [PubMed].
    [Google Scholar]
  25. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H.. ( 1991b;). Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34: 617–622 [CrossRef] [PubMed].
    [Google Scholar]
  26. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Lüdtke K. U., Sahm H.. ( 1994;). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140: 1817–1828 [CrossRef] [PubMed].
    [Google Scholar]
  27. Fujita Y.. ( 2009;). Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73: 245–259 [CrossRef] [PubMed].
    [Google Scholar]
  28. Gabor E., Göhler A. K., Kosfeld A., Staab A., Kremling A., Jahreis K.. ( 2011;). The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 90: 711–720 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ginsburg A., Peterkofsky A.. ( 2002;). Enzyme I: the gateway to the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Arch Biochem Biophys 397: 273–278 [CrossRef] [PubMed].
    [Google Scholar]
  30. Görke B., Stülke J.. ( 2008;). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613–624 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580 [CrossRef] [PubMed].
    [Google Scholar]
  32. Henrich A., Kuhlmann N., Eck A. W., Krämer R., Seibold G. M.. ( 2013;). Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol 195: 2573–2584 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hogema B. M., Arents J. C., Bader R., Eijkemans K., Inada T., Aiba H., Postma P. W.. ( 1998;). Inducer exclusion by glucose 6-phosphate in Escherichia coli. Mol Microbiol 28: 755–765 [CrossRef] [PubMed].
    [Google Scholar]
  34. Hurley J. H., Faber H. R., Worthylake D., Meadow N. D., Roseman S., Pettigrew D. W., Remington S. J.. ( 1993;). Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259: 673–677 [CrossRef] [PubMed].
    [Google Scholar]
  35. Inada T., Kimata K., Aiba H.. ( 1996;). Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1: 293–301 [CrossRef] [PubMed].
    [Google Scholar]
  36. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J., other authors. ( 2003;). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104: 5–25 [CrossRef] [PubMed].
    [Google Scholar]
  37. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S., Okuda S., other authors. ( 2008;). KEGG for linking genomes to life and the environment. Nucleic Acids Res 36: (Database), D480–D484 [CrossRef] [PubMed].
    [Google Scholar]
  38. Knoppová M., Phensaijai M., Veselý M., Zemanová M., Nesvera J., Pátek M.. ( 2007;). Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55: 234–239 [CrossRef] [PubMed].
    [Google Scholar]
  39. Koch S., Sutrina S. L., Wu L. F., Reizer J., Schnetz K., Rak B., Saier M. H. Jr. ( 1996;). Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. J Bacteriol 178: 1126–1133.
    [Google Scholar]
  40. Koch-Koerfges A., Kabus A., Ochrombel I., Marin K., Bott M.. ( 2012;). Physiology and global gene expression of a Corynebacterium glutamicum ΔF1F0-ATP synthase mutant devoid of oxidative phosphorylation. Biochim Biophys Acta 1817: 370–380 [CrossRef] [PubMed].
    [Google Scholar]
  41. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227: 680–685 [CrossRef] [PubMed].
    [Google Scholar]
  42. Lee J. K., Sung M. H., Yoon K. H., Yu J. H., Oh T. K.. ( 1994;). Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence. FEMS Microbiol Lett 119: 137–145 [CrossRef] [PubMed].
    [Google Scholar]
  43. Lindner C., Galinier A., Hecker M., Deutscher J.. ( 1999;). Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 31: 995–1006 [CrossRef] [PubMed].
    [Google Scholar]
  44. Lindner S. N., Knebel S., Pallerla S. R., Schoberth S. M., Wendisch V. F.. ( 2010;). Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 87: 703–713 [CrossRef] [PubMed].
    [Google Scholar]
  45. Lindner S. N., Seibold G. M., Henrich A., Krämer R., Wendisch V. F.. ( 2011;). Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77: 3571–3581 [CrossRef] [PubMed].
    [Google Scholar]
  46. Lindner S. N., Petrov D. P., Hagmann C. T., Henrich A., Krämer R., Eikmanns B. J., Wendisch V. F., Seibold G. M.. ( 2013;). Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol 79: 2588–2595 [CrossRef] [PubMed].
    [Google Scholar]
  47. Lux R., Jahreis K., Bettenbrock K., Parkinson J. S., Lengeler J. W.. ( 1995;). Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A 92: 11583–11587 [CrossRef] [PubMed].
    [Google Scholar]
  48. Marciniak B. C., Pabijaniak M., de Jong A., Dühring R., Seidel G., Hillen W., Kuipers O. P.. ( 2012;). High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genomics 13: 401 [CrossRef] [PubMed].
    [Google Scholar]
  49. Martin-Verstraete I., Charrier V., Stülke J., Galinier A., Erni B., Rapoport G., Deutscher J.. ( 1998;). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28: 293–303 [CrossRef] [PubMed].
    [Google Scholar]
  50. Möker N., Brocker M., Schaffer S., Krämer R., Morbach S., Bott M.. ( 2004;). Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54: 420–438 [CrossRef] [PubMed].
    [Google Scholar]
  51. Monedero V., Kuipers O. P., Jamet E., Deutscher J.. ( 2001;). Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis. J Bacteriol 183: 3391–3398 [CrossRef] [PubMed].
    [Google Scholar]
  52. Monedero V., Yebra M. J., Poncet S., Deutscher J.. ( 2008;). Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 159: 94–102 [CrossRef] [PubMed].
    [Google Scholar]
  53. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K.. ( 2005;). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.. FEMS Microbiol Lett 244: 259–266 [CrossRef] [PubMed].
    [Google Scholar]
  54. Netzer R., Krause M., Rittmann D., Peters-Wendisch P. G., Eggeling L., Wendisch V. F., Sahm H.. ( 2004;). Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 182: 354–363 [CrossRef] [PubMed].
    [Google Scholar]
  55. Osumi T., Saier M. H. Jr. ( 1982;). Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proc Natl Acad Sci U S A 79: 1457–1461 [CrossRef] [PubMed].
    [Google Scholar]
  56. Paczia N., Nilgen A., Lehmann T., Gätgens J., Wiechert W., Noack S.. ( 2012;). Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact 11: 122 [CrossRef] [PubMed].
    [Google Scholar]
  57. Parche S., Burkovski A., Sprenger G. A., Weil B., Krämer R., Titgemeyer F.. ( 2001;). Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3: 423–428.
    [Google Scholar]
  58. Park Y. H., Lee C. R., Choe M., Seok Y. J.. ( 2013;). HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli. Proc Natl Acad Sci U S A 110: 21142–21147 [CrossRef] [PubMed].
    [Google Scholar]
  59. Pas H. H., Robillard G. T.. ( 1988;). S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Biochemistry 27: 5835–5839 [CrossRef] [PubMed].
    [Google Scholar]
  60. Poncet S., Mijakovic I., Nessler S., Gueguen-Chaignon V., Chaptal V., Galinier A., Boël G., Mazé A., Deutscher J.. ( 2004;). HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria. Biochim Biophys Acta 1697: 123–135 [CrossRef] [PubMed].
    [Google Scholar]
  61. Postma P. W., Lengeler J. W., Jacobson G. R.. ( 1993;). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594.
    [Google Scholar]
  62. Ramström H., Sanglier S., Leize-Wagner E., Philippe C., Van Dorsselaer A., Haiech J.. ( 2003;). Properties and regulation of the bifunctional enzyme HPr kinase/phosphatase in Bacillus subtilis. J Biol Chem 278: 1174–1185 [CrossRef] [PubMed].
    [Google Scholar]
  63. Saier M.H., Jr, Roseman S.. ( 1976a;). Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J Biol Chem 251: 6598–6605.
    [Google Scholar]
  64. Saier M. H. Jr, Roseman S.. ( 1976b;). Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem 251: 6606–6615.
    [Google Scholar]
  65. Sambrook J., Russel D. W., Irwin N., Janssen U. A.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  66. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69–73 [CrossRef] [PubMed].
    [Google Scholar]
  67. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B.. ( 1996;). LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178: 1971–1979.
    [Google Scholar]
  68. Schröder J., Tauch A.. ( 2010;). Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34: 685–737 [CrossRef] [PubMed].
    [Google Scholar]
  69. Schumacher M. A., Allen G. S., Diel M., Seidel G., Hillen W., Brennan R. G.. ( 2004;). Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118: 731–741 [CrossRef] [PubMed].
    [Google Scholar]
  70. Schumacher M. A., Sprehe M., Bartholomae M., Hillen W., Brennan R. G.. ( 2011;). Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res 39: 2931–2942 [CrossRef] [PubMed].
    [Google Scholar]
  71. Seibold G. M., Eikmanns B. J.. ( 2007;). The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology 153: 2212–2220 [CrossRef] [PubMed].
    [Google Scholar]
  72. Seibold G. M., Eikmanns B. J.. ( 2013;). Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism. Biosci Rep 33: e00059 [CrossRef] [PubMed].
    [Google Scholar]
  73. Seibold G., Dempf S., Schreiner J., Eikmanns B. J.. ( 2007;). Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153: 1275–1285 [CrossRef] [PubMed].
    [Google Scholar]
  74. Seibold G. M., Wurst M., Eikmanns B. J.. ( 2009;). Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology 155: 347–358 [CrossRef] [PubMed].
    [Google Scholar]
  75. Seok Y. J., Sondej M., Badawi P., Lewis M. S., Briggs M. C., Jaffe H., Peterkofsky A.. ( 1997;). High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem 272: 26511–26521 [CrossRef] [PubMed].
    [Google Scholar]
  76. Simoni R. D., Roseman S., Saier M. H. Jr. ( 1976;). Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 251: 6584–6597.
    [Google Scholar]
  77. Tauch A., Kirchner O., Löffler B., Götker S., Pühler A., Kalinowski J.. ( 2002;). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.. Curr Microbiol 45: 362–367 [CrossRef] [PubMed].
    [Google Scholar]
  78. Teramoto H., Inui M., Yukawa H.. ( 2011;). Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J Biotechnol 154: 114–125 [CrossRef] [PubMed].
    [Google Scholar]
  79. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  80. Uhde A., Youn J. W., Maeda T., Clermont L., Matano C., Krämer R., Wendisch V. F., Seibold G. M., Marin K.. ( 2013;). Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97: 1679–1687 [CrossRef] [PubMed].
    [Google Scholar]
  81. Venditti V., Clore G. M.. ( 2012;). Conformational selection and substrate binding regulate the monomer/dimer equilibrium of the C-terminal domain of Escherichia coli enzyme I. J Biol Chem 287: 26989–26998 [CrossRef] [PubMed].
    [Google Scholar]
  82. Waygood E. B.. ( 1998;). The structure and function of HPr. Biochem Cell Biol 76: 359–367 [CrossRef] [PubMed].
    [Google Scholar]
  83. Wendisch V. F.. ( 2014;). Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30: 51–58 [CrossRef] [PubMed].
    [Google Scholar]
  84. Wolf A., Krämer R., Morbach S.. ( 2003;). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49: 1119–1134 [CrossRef] [PubMed].
    [Google Scholar]
  85. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. ( 2008;). Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190: 6458–6466 [CrossRef] [PubMed].
    [Google Scholar]
  86. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. ( 2009;). Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191: 5480–5488 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000134
Loading
/content/journal/micro/10.1099/mic.0.000134
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error