1887

Abstract

Several segments (∼20 kbp) of the lime witches’ broom (LWB) phytoplasma genome (16SrII group) were sequenced and analysed. A 5.7 kbp segment (LWB-C) included conserved genes whose phylogenetic tree was consistent with that generated using 16S rRNA genes. Another 6.4 kbp LWB phytoplasma genome segment (LWB-NC) was structurally similar to the putative mobile unit or sequence variable mosaic genomic region of phytoplasmas, although it represented a new arrangement of genes or pseudogenes such as phage-related protein genes and insertion sequences. Sequence- and phylogenetic-based evidence suggested that LWB-NC is a genomic region which includes horizontally transferred genes and could be regarded as a hot region to incorporate more foreign genes into the genome of LWB phytoplasma. The presence of phylogenetically related fragments of retroelements was also verified in the LWB phytoplasma genome. Putative intragenomic retrotransposition or retrohoming of these elements might have been determinant in shaping and manipulating the LWB phytoplasma genome. Altogether, the results of this study suggested that the genome of LWB phytoplasma is colonized by a variety of genes that have been acquired through horizontal gene transfer events, which may have further affected the genome through intragenomic mobility and insertion at cognate or incognate sites. Some of these genes are expected to have been involved in the development of features specific to LWB phytoplasma.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000133
2015-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1741.html?itemId=/content/journal/micro/10.1099/mic.0.000133&mimeType=html&fmt=ahah

References

  1. Andersen M. T., Liefting L. W., Havukkala I., Beever R. E.. 2013; Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics14:529 [CrossRef][PubMed]
    [Google Scholar]
  2. Bai X., Zhang J., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D. V., Tsukerman K., Walunas T., Lapidus A., other authors. 2006; Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol188:3682–3696 [CrossRef][PubMed]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  4. Bertaccini A., Duduk B.. 2009; Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr48:355–378
    [Google Scholar]
  5. Chung W. C., Chen L. L., Lo W. S., Lin C. P., Kuo C. H.. 2013; Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One8:e62770 [CrossRef][PubMed]
    [Google Scholar]
  6. Cimerman A., Arnaud G., Foissac X.. 2006; Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl Environ Microbiol72:3274–3283 [CrossRef][PubMed]
    [Google Scholar]
  7. Contaldo N., Bertaccini A., Paltrinieri S., Windsor H. M., Windsor G. D.. 2012; Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr51:607–617
    [Google Scholar]
  8. Engelberg-Kulka H.. 1981; UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res9:983–991 [CrossRef][PubMed]
    [Google Scholar]
  9. González B., Ceciliani F., Galizzi A.. 2003; Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol101:173–180 [CrossRef][PubMed]
    [Google Scholar]
  10. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  11. Gundersen D. E., Lee I. M.. 1996; Ultrasensitive detection of phytoplasmas by nested PCR assays using two universal primer pairs. Phytopathol Mediterr35:144–151
    [Google Scholar]
  12. Hogenhout S. A., Oshima K., Ammar D., Kakizawa S., Kingdom H. N., Namba S.. 2008; Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol9:403–423 [CrossRef][PubMed]
    [Google Scholar]
  13. Jomantiene R., Davis R. E.. 2006; Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett255:59–65 [CrossRef][PubMed]
    [Google Scholar]
  14. Jomantiene R., Zhao Y., Davis R. E.. 2007; Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA Cell Biol26:557–564 [CrossRef][PubMed]
    [Google Scholar]
  15. Kakizawa S., Makino A., Ishii Y., Tamaki H., Kamagata Y.. 2014; Draft genome sequence of “Candidatus Phytoplasma asteris” strain OY-V, an unculturable plant-pathogenic bacterium. Genome Announc2:e00944–e00914 [CrossRef][PubMed]
    [Google Scholar]
  16. Käll L., Krogh A., Sonnhammer E. L.. 2004; A combined transmembrane topology and signal peptide prediction method. J Mol Biol338:1027–1036 [CrossRef][PubMed]
    [Google Scholar]
  17. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  18. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E.. 2008; The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics9:306 [CrossRef][PubMed]
    [Google Scholar]
  19. Kube M., Mitrovic J., Duduk B., Rabus R., Seemüller E.. 2012; Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal2012:185942 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee I. M., Davis R. E., Gundersen-Rindal D. E.. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol54:221–255 [CrossRef][PubMed]
    [Google Scholar]
  21. Lim P. O., Sears B. B.. 1992; Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol174:2606–2611
    [Google Scholar]
  22. Mahillon J., Chandler M.. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–774
    [Google Scholar]
  23. Maixner M., Ahrens U., Seemuller E.. 1995; Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur J Plant Pathol101:241–250 [CrossRef]
    [Google Scholar]
  24. Marcone C., Neimark H., Ragozzino A., Lauer U., Seemüller E.. 1999; Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology89:805–810 [CrossRef][PubMed]
    [Google Scholar]
  25. Matsugi J., Murao K., Ishikura H.. 1998; Effect of B. subtilis tRNATrp on readthrough rate at an opal UGA codon. J Biochem123:853–858 [CrossRef][PubMed]
    [Google Scholar]
  26. Mitrović J., Siewert C., Duduk B., Hecht J., Mölling K., Broecker F., Beyerlein P., Büttner C., Bertaccini A., Kube M.. 2014; Generation and analysis of draft sequences of ‘stolbur’ phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol24:1–11 [CrossRef][PubMed]
    [Google Scholar]
  27. Namba S.. 2011; Phytoplasmas: a century of pioneering research. J Gen Plant Pathol77:345–349 [CrossRef]
    [Google Scholar]
  28. Oshima K., Kakizawa S., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S., other authors. 2004; Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet36:27–29 [CrossRef][PubMed]
    [Google Scholar]
  29. Saccardo F., Martini M., Palmano S., Ermacora P., Scortichini M., Loi N., Firrao G.. 2012; Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology158:2805–2814 [CrossRef][PubMed]
    [Google Scholar]
  30. Siampour M., Izadpanah K., Galetto L., Salehi M., Marzachı C.. 2013; Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathol62:452–459 [CrossRef]
    [Google Scholar]
  31. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol7:539 [CrossRef][PubMed]
    [Google Scholar]
  32. Simon D. M., Clarke N. A. C., McNeil B. A., Johnson I., Pantuso D., Dai L., Chai D., Zimmerly S.. 2008; Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA14:1704–1713 [CrossRef][PubMed]
    [Google Scholar]
  33. Tran-Nguyen L. T. T., Kube M., Schneider B., Reinhardt R., Gibb K. S.. 2008; Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB. J Bacteriol190:3979–3991 [CrossRef][PubMed]
    [Google Scholar]
  34. Wei W., Davis R. E., Jomantiene R., Zhao Y.. 2008; Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci U S A105:11827–11832 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000133
Loading
/content/journal/micro/10.1099/mic.0.000133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error