1887

Abstract

physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35  % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70  % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4  % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating representations of metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000118
2015-08-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1659.html?itemId=/content/journal/micro/10.1099/mic.0.000118&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani H., Hudson A.J., Chang Y.S., Timms A.R., Hawkins C., Williams J.M., Harrison P.M., Guest J.R., Andrews S.C.. 1999; Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol181:1415–1428[PubMed]
    [Google Scholar]
  2. Alexeeva S., de Kort B., Sawers G., Hellingwerf K.J., de Mattos M.J.T.. 2000; Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli . J Bacteriol182:4934–4940 [CrossRef][PubMed]
    [Google Scholar]
  3. Bauer S., Ziv E.. 1976; Dense growth of aerobic bacteria in a bench-scale fermentor. Biotechnol Bioeng18:81–94 [CrossRef][PubMed]
    [Google Scholar]
  4. Becker A., Fritz-Wolf K., Kabsch W., Knappe J., Schultz S., Volker Wagner A.F.. 1999; Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol6:969–975 [CrossRef][PubMed]
    [Google Scholar]
  5. Bloom A.J., Chapin F.S., Mooney H.A.. 1985; Resource limitation in plants – an economic analogy. Annu Rev Ecol Evol Syst16:363–392 [CrossRef]
    [Google Scholar]
  6. Brauer M.J., Yuan J., Bennett B.D., Lu W., Kimball E., Botstein D., Rabinowitz J.D.. 2006; Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A103:19302–19307 [CrossRef][PubMed]
    [Google Scholar]
  7. Bull A.T.. 2010; The renaissance of continuous culture in the post-genomics age. J Ind Microbiol Biotechnol37:993–1021 [CrossRef][PubMed]
    [Google Scholar]
  8. Carlson R.P.. 2007; Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics23:1258–1264 [CrossRef][PubMed]
    [Google Scholar]
  9. Carlson R.P.. 2009; Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics25:90–97 [CrossRef][PubMed]
    [Google Scholar]
  10. Carlson R., Srienc F.. 2004; Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol Bioeng86:149–162 [CrossRef][PubMed]
    [Google Scholar]
  11. Carlson R.P., Taffs R.L.. 2010; Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr Opin Biotechnol21:670–676 [CrossRef][PubMed]
    [Google Scholar]
  12. Castan A., Enfors S.O.. 2002; Formate accumulation due to DNA release in aerobic cultivations of Escherichia coli . Biotechnol Bioeng77:324–328 [CrossRef][PubMed]
    [Google Scholar]
  13. Chevalier F.. 2010; Highlights on the capacities of “gel-based” proteomics. Proteome Sci8:23 [CrossRef][PubMed]
    [Google Scholar]
  14. Chrzanowski T.H., Grover J.P.. 2008; Element content of Pseudomonas fluorescens varies with growth rate and temperature: a replicated chemostat study addressing ecological stoichiometry. Limnol Oceanogr53:1242–1251 [CrossRef]
    [Google Scholar]
  15. Clark D.P.. 1989; The fermentation pathways of Escherichia coli . FEMS Microbiol Rev5:223–234[PubMed]
    [Google Scholar]
  16. Cordier J.-L., Butsch B., Birou B., Stockar U.. 1987; The relationship between elemental composition and heat of combustion of microbial biomass. Appl Microbiol Biotechnol25:305–312[CrossRef]
    [Google Scholar]
  17. Cotner J.B., Makino W., Biddanda B.A.. 2006; Temperature affects stoichiometry and biochemical composition of Escherichia coli . Microb Ecol52:26–33 [CrossRef][PubMed]
    [Google Scholar]
  18. De Maeseneire S.L., De Mey M., Vandedrinck S., Vandamme E.J.. 2006; Metabolic characterisation of E. coli citrate synthase and phosphoenolpyruvate carboxylase mutants in aerobic cultures. Biotechnol Lett28:1945–1953 [CrossRef][PubMed]
    [Google Scholar]
  19. Del Don C., Hanselmann K.W., Peduzzi R., Bachofen R.. 1994; Biomass composition and methods for the determination of metabolic reserve polymers in phototrophic sulfur bacteria. Aquat Sci56:1–15 [CrossRef]
    [Google Scholar]
  20. Dratz E.A., Grieco P.. 2009; Novel optical labeling molecules in proteomics and other biological analyses. World Patent 2009/005871-A
  21. Egli T.. 1991; On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie van Leeuwenhoek60:225–234 [CrossRef][PubMed]
    [Google Scholar]
  22. Fischer E., Sauer U.. 2003; A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J Biol Chem278:46446–46451 [CrossRef][PubMed]
    [Google Scholar]
  23. Folsom J.P., Parker A.E., Carlson R.P.. 2014; Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol196:2748–2761 [CrossRef][PubMed]
    [Google Scholar]
  24. Heldal M., Norland S., Fagerbakke K., Thingstad F., Bratbak G.. 1996; The elemental composition of bacteria: a signature of growth conditions?. Mar Pollut Bull33:3–9 [CrossRef]
    [Google Scholar]
  25. Ho K.P., Payne W.J.. 1979; Assimilation efficiency and energy contents of prototrophic bacteria. Biotechnol Bioeng21:787–802 [CrossRef]
    [Google Scholar]
  26. Holme T., Westöö G., Svennerholm L., Magnéli A., Magnéli A., Pestmalis H., Åsbrink S.. 1957; Continuous culture studies on glycogen synthesis in Escherichia coli B. Acta Chem Scand11:763–775 [CrossRef]
    [Google Scholar]
  27. Hua Q., Yang C., Baba T., Mori H., Shimizu K.. 2003; Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol185:7053–7067 [CrossRef][PubMed]
    [Google Scholar]
  28. Hua Q., Yang C., Oshima T., Mori H., Shimizu K.. 2004; Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol70:2354–2366 [CrossRef][PubMed]
    [Google Scholar]
  29. Hudson A.J., Andrews S.C., Hawkins C., Williams J.M., Izuhara M., Meldrum F.C., Mann S., Harrison P.M., Guest J.R.. 1993; Overproduction, purification and characterization of the Escherichia coli ferritin. Eur J Biochem218:985–995 [CrossRef][PubMed]
    [Google Scholar]
  30. Ihssen J., Egli T.. 2004; Specific growth rate and not cell density controls the general stress response in Escherichia coli . Microbiology150:1637–1648 [CrossRef][PubMed]
    [Google Scholar]
  31. Keshavarz T., Roy I.. 2010; Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol13:321–326 [CrossRef][PubMed]
    [Google Scholar]
  32. Kussell E., Leibler S.. 2005; Phenotypic diversity, population growth, and information in fluctuating environments. Science309:2075–2078 [CrossRef][PubMed]
    [Google Scholar]
  33. Kussell E., Kishony R., Balaban N.Q., Leibler S.. 2005; Bacterial persistence: a model of survival in changing environments. Genetics169:1807–1814 [CrossRef][PubMed]
    [Google Scholar]
  34. Law R.. 1979; Optimal life histories under age-specific predation. Am Nat114:399–417 [CrossRef]
    [Google Scholar]
  35. Liu X., Ferenci T.. 1998; Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli . J Bacteriol180:3917–3922[PubMed]
    [Google Scholar]
  36. Miller T.E., Burns J.H., Munguia P., Walters E.L., Kneitel J.M., Richards P.M., Mouquet N., Buckley H.L.. 2005; A critical review of twenty years’ use of the resource-ratio theory. Am Nat165:439–448 [CrossRef][PubMed]
    [Google Scholar]
  37. Molenaar D., vanBerlo R., deRidder D., Teusink B.. 2009; Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol5:323 [CrossRef][PubMed]
    [Google Scholar]
  38. Monod J.. 1950; [The continuous culture technique: theory and applications]. Ann Inst Pasteur (Paris)79:390 (in French)
    [Google Scholar]
  39. Moreau P.L.. 2007; The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol189:2249–2261 [CrossRef][PubMed]
    [Google Scholar]
  40. Nanchen A., Schicker A., Sauer U.. 2006; Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli . Appl Environ Microbiol72:1164–1172 [CrossRef][PubMed]
    [Google Scholar]
  41. Natarajan A., Srienc F.. 2000; Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures. J Microbiol Methods42:87–96 [CrossRef][PubMed]
    [Google Scholar]
  42. Neijssel O.M., Teixeira de Mattos M.J., Tempest D.W.. 1996; Growth yield and energy distribution. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp.1683–1692 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Novick A., Szilard L.. 1950; Description of the chemostat. Science112:715–716 [CrossRef][PubMed]
    [Google Scholar]
  44. Pickett A.M., Bazin M.J., Topiwala H.H.. 1979; Growth and composition of Escherichia coli subjected to square-wave perturbations in nutrient supply: effect of varying frequencies. Biotechnol Bioeng21:1043–1055 [CrossRef]
    [Google Scholar]
  45. Pirt S.J.. 1975; Principles of Microbe Cultivation Oxford: Blackwell Scientific;
    [Google Scholar]
  46. Pirt S.J.. 1982; Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol133:300–302 [CrossRef][PubMed]
    [Google Scholar]
  47. Roels J.A.. 1980; Application of macroscopic principles to microbial metabolism. Biotechnol Bioeng22:2457–2514 [CrossRef]
    [Google Scholar]
  48. Sauer U., Lasko D.R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wüthrich K., Bailey J.E.. 1999; Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol181:6679–6688[PubMed]
    [Google Scholar]
  49. Schliep M., Ryall B., Ferenci T.. 2012; The identification of global patterns and unique signatures of proteins across 14 environments using outer membrane proteomics of bacteria. Mol Biosyst8:3017–3027 [CrossRef][PubMed]
    [Google Scholar]
  50. Scott J.T., Cotner J.B., Lapara T.M.. 2012; Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Front Microbiol3:42 [CrossRef][PubMed]
    [Google Scholar]
  51. Searle P.L.. 1984; The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen: a review. Analyst (Lond)109:549–568 [CrossRef]
    [Google Scholar]
  52. Senior P.J.. 1975; Regulation of nitrogen metabolism in Escherichia coli Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol123:407–418[PubMed]
    [Google Scholar]
  53. Shipman M., Lubick K., Fouchard D., Guram R., Grieco P., Jutila M., Dratz E.A.. 2012; Proteomic and systems biology analysis of monocytes exposed to securinine, a GABAA receptor antagonist and immune adjuvant. PLoS One7:e41278 [CrossRef][PubMed]
    [Google Scholar]
  54. Simonds S., Grover J.P., Chrzanowski T.H.. 2010; Element content of Ochromonas danica: a replicated chemostat study controlling the growth rate and temperature. FEMS Microbiol Ecol74:346–352 [CrossRef][PubMed]
    [Google Scholar]
  55. Sterner R.W., Elser J.J.. 2002; Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton University Press;
    [Google Scholar]
  56. Stieg S.. 2005; 4500-NH3 F. Phenate method. In Standard Methods for the Examination of Water and Wastewater pp.4–114 Edited by Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E., Franson M. A. H.. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation;
    [Google Scholar]
  57. Sukmarini L., Shimizu K.. 2010; Metabolic regulation of Escherichia coli and its glnG and zwf mutants under nitrogen limitation. Biochem Eng J48:230–236 [CrossRef][PubMed]
    [Google Scholar]
  58. Tilman D.. 1982; Resource Competition and Community Structure Princeton, NJ: Princeton University Press;
    [Google Scholar]
  59. Wagner A.F., Schultz S., Bomke J., Pils T., Lehmann W.D., Knappe J.. 2001; YfiD of Escherichia coli and Y06I of bacteriophage tbl4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun285:456–462 [CrossRef][PubMed]
    [Google Scholar]
  60. Wang C.C., Newton A.. 1969; Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine. J Bacteriol98:1142–1150[PubMed]
    [Google Scholar]
  61. Zhu J., Shalel-Levanon S., Bennett G., San K.Y.. 2007; The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain. Biotechnol Bioeng97:138–143 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000118
Loading
/content/journal/micro/10.1099/mic.0.000118
Loading

Data & Media loading...

Supplements

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error