1887

Abstract

The foodborne bacterial pathogen is an obligate microaerophile that is exposed to atmospheric oxygen during transmission through the food chain. Survival under aerobic conditions requires the concerted control of oxidative stress systems, which in are intimately connected with iron metabolism via the PerR and Fur regulatory proteins. Here, we have characterized the roles of PerR in oxidative stress and motility phenotypes, and its regulon at the level of transcription, protein expression and promoter interactions. Insertional inactivation of in the reference strains NCTC 11168, 81-176 and 81116 did not result in any growth deficiencies, but strongly increased survival in atmospheric oxygen conditions, and allowed growth around filter discs infused with up to 30 % HO (8.8 M). Expression of catalase, alkyl hydroperoxide reductase, thioredoxin reductase and the Rrc desulforubrerythrin was increased in the mutant, and this was mediated at the transcriptional level as shown by electrophoretic mobility shift assays of the , and promoters using purified PerR. Differential RNA-sequencing analysis of a mutant allowed the identification of eight previously unknown transcription start sites of genes controlled by Fur and/or PerR. Finally, inactivation of in did not result in reduced motility, and did not reduce killing of wax moth larvae. In conclusion, PerR plays an important role in controlling oxidative stress resistance and aerobic survival of , but this role does not extend into control of motility and associated phenotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000109
2015-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1524.html?itemId=/content/journal/micro/10.1099/mic.0.000109&mimeType=html&fmt=ahah

References

  1. Atack J.M. , Harvey P. , Jones M.A. , Kelly D.J. . ( 2008;). The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol 190: 5279–5290 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baichoo N. , Helmann J.D. . ( 2002;). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184: 5826–5832 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bailey T.L. , Boden M. , Buske F.A. , Frith M. , Grant C.E. , Clementi L. , Ren J. , Li W.W. , Noble W.S. . ( 2009;). meme suite: tools for motif discovery and searching. Nucleic Acids Res 37: (Web Server), W202–W208 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baillon M.L. , van Vliet A.H.M. , Ketley J.M. , Constantinidou C. , Penn C.W. . ( 1999;). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni . J Bacteriol 181: 4798–4804 [PubMed].
    [Google Scholar]
  5. Belzer C. , van Schendel B.A.M. , Hoogenboezem T. , Kusters J.G. , Hermans P.W.M. , van Vliet A.H.M. , Kuipers E.J. . ( 2011;). PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes in Helicobacter hepaticus . Eur J Microbiol Immunol (Bp) 1: 215–222 [CrossRef] [PubMed].
    [Google Scholar]
  6. Butcher J. , Stintzi A. . ( 2013;). The transcriptional landscape of Campylobacter jejuni under iron replete and iron limited growth conditions. PLoS One 8: e79475 [CrossRef] [PubMed].
    [Google Scholar]
  7. Butcher J. , Sarvan S. , Brunzelle J.S. , Couture J.F. , Stintzi A. . ( 2012;). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci U S A 109: 10047–10052 [CrossRef] [PubMed].
    [Google Scholar]
  8. Carrillo C.D. , Taboada E. , Nash J.H.E. , Lanthier P. , Kelly J. , Lau P.C. , Verhulp R. , Mykytczuk O. , Sy J. , other authors . ( 2004;). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA . J Biol Chem 279: 20327–20338 [CrossRef] [PubMed].
    [Google Scholar]
  9. Caux-Thang C. , Parent A. , Sethu R. , Maïga A. , Blondin G. , Latour J.M. , Duarte V. . ( 2015;). Single asparagine to arginine mutation allows PerR to switch from PerR box to Fur box. ACS Chem Biol 10: 682–686 [CrossRef] [PubMed].
    [Google Scholar]
  10. Champion O.L. , Karlyshev A.V. , Senior N.J. , Woodward M. , La Ragione R. , Howard S.L. , Wren B.W. , Titball R.W. . ( 2010;). Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 201: 776–782 [PubMed].
    [Google Scholar]
  11. Chaudhuri R.R. , Yu L. , Kanji A. , Perkins T.T. , Gardner P.P. , Choudhary J. , Maskell D.J. , Grant A.J. . ( 2011;). Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome. Microbiology 157: 2922–2932 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chuang M.H. , Wu M.S. , Lo W.L. , Lin J.T. , Wong C.H. , Chiou S.H. . ( 2006;). The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci U S A 103: 2552–2557 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dufour V. , Li J. , Flint A. , Rosenfeld E. , Rivoal K. , Georgeault S. , Alazzam B. , Ermel G. , Stintzi A. , other authors . ( 2013;). Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration. Microbiology 159: 1165–1178 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dugar G. , Herbig A. , Förstner K.U. , Heidrich N. , Reinhardt R. , Nieselt K. , Sharma C.M. . ( 2013;). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9: e1003495 [CrossRef] [PubMed].
    [Google Scholar]
  15. EFSA Panel on Biological Hazards (BIOHAZ) ( 2011;). Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal 9: 2105.
    [Google Scholar]
  16. Flint A. , Stintzi A. . ( 2015;). Cj1386, an atypical hemin-binding protein, mediates hemin trafficking to KatA in Campylobacter jejuni . J Bacteriol 197: 1002–1011 [CrossRef] [PubMed].
    [Google Scholar]
  17. Flint A. , Sun Y.Q. , Butcher J. , Stahl M. , Huang H. , Stintzi A. . ( 2014;). Phenotypic screening of a targeted mutant library reveals Campylobacter jejuni defenses against oxidative stress. Infect Immun 82: 2266–2275 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gundogdu O. , Bentley S.D. , Holden M.T. , Parkhill J. , Dorrell N. , Wren B.W. . ( 2007;). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gundogdu O. , Mills D.C. , Elmi A. , Martin M.J. , Wren B.W. , Dorrell N. . ( 2011;). The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo . J Bacteriol 193: 4238–4249 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hazeleger W.C. , Wouters J.A. , Rombouts F.M. , Abee T. . ( 1998;). Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl Environ Microbiol 64: 3917–3922 [PubMed].
    [Google Scholar]
  21. Hendrixson D.R. . ( 2006;). A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol Microbiol 61: 1646–1659 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hockin N.L. , Mock T. , Mulholland F. , Kopriva S. , Malin G. . ( 2012;). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158: 299–312 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hoffmann S. , Otto C. , Kurtz S. , Sharma C.M. , Khaitovich P. , Vogel J. , Stadler P.F. , Hackermüller J. . ( 2009;). Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLOS Comput Biol 5: e1000502 [CrossRef] [PubMed].
    [Google Scholar]
  24. Holmes K. , Mulholland F. , Pearson B.M. , Pin C. , McNicholl-Kennedy J. , Ketley J.M. , Wells J.M. . ( 2005;). Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151: 243–257 [CrossRef] [PubMed].
    [Google Scholar]
  25. Huergo L.F. , Rahman H. , Ibrahimovic A. , Day C.J. , Korolik V. . ( 2013;). Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 195: 1970–1978 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hwang S. , Jeon B. , Yun J. , Ryu S. . ( 2011a;). Roles of RpoN in the resistance of Campylobacter jejuni under various stress conditions. BMC Microbiol 11: 207 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hwang S. , Kim M. , Ryu S. , Jeon B. . ( 2011b;). Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni . PLoS One 6: e22300 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hwang S. , Zhang Q. , Ryu S. , Jeon B. . ( 2012;). Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni . J Bacteriol 194: 6883–6891 [CrossRef] [PubMed].
    [Google Scholar]
  29. Janssen R. , Krogfelt K.A. , Cawthraw S.A. , van Pelt W. , Wagenaar J.A. , Owen R.J. . ( 2008;). Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21: 505–518 [CrossRef] [PubMed].
    [Google Scholar]
  30. Kendall J.J. , Barrero-Tobon A.M. , Hendrixson D.R. , Kelly D.J. . ( 2014;). Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environ Microbiol 16: 1105–1121 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kim M. , Hwang S. , Ryu S. , Jeon B. . ( 2011;). Regulation of perR expression by iron and PerR in Campylobacter jejuni . J Bacteriol 193: 6171–6178 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kim J.C. , Oh E. , Hwang S. , Ryu S. , Jeon B. . ( 2015;). Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni . Front Microbiol 6: 126 [CrossRef] [PubMed].
    [Google Scholar]
  33. Marinho H.S. , Real C. , Cyrne L. , Soares H. , Antunes F. . ( 2014;). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535–562 [CrossRef] [PubMed].
    [Google Scholar]
  34. Mattatall N.R. , Sanderson K.E. . ( 1996;). Salmonella typhimurium LT2 possesses three distinct 23S rRNA intervening sequences. J Bacteriol 178: 2272–2278 [PubMed].
    [Google Scholar]
  35. McCarthy N.D. , Gillespie I.A. , Lawson A.J. , Richardson J. , Neal K.R. , Hawtin P.R. , Maiden M.C. , O'Brien S.J. . ( 2012;). Molecular epidemiology of human Campylobacter jejuni shows association between seasonal and international patterns of disease. Epidemiol Infect 140: 2247–2255 [CrossRef] [PubMed].
    [Google Scholar]
  36. Miller C.E. , Williams P.H. , Ketley J.M. . ( 2009;). Pumping iron: mechanisms for iron uptake by Campylobacter . Microbiology 155: 3157–3165 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nichols G.L. , Richardson J.F. , Sheppard S.K. , Lane C. , Sarran C. . ( 2012;). Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2: e001179 [CrossRef] [PubMed].
    [Google Scholar]
  38. Nicol J.W. , Helt G.A. , Blanchard S.G. Jr , Raja A. , Loraine A.E. . ( 2009;). The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25: 2730–2731 [CrossRef] [PubMed].
    [Google Scholar]
  39. Oh E. , Jeon B. . ( 2014;). Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni . PLoS One 9: e87312 [CrossRef] [PubMed].
    [Google Scholar]
  40. Palyada K. , Sun Y.Q. , Flint A. , Butcher J. , Naikare H. , Stintzi A. . ( 2009;). Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni . BMC Genomics 10: 481 [CrossRef] [PubMed].
    [Google Scholar]
  41. Parkhill J. , Wren B.W. , Mungall K. , Ketley J.M. , Churcher C. , Basham D. , Chillingworth T. , Davies R.M. , Feltwell T. , other authors . ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665–668 [CrossRef] [PubMed].
    [Google Scholar]
  42. Pinto A.F. , Todorovic S. , Hildebrandt P. , Yamazaki M. , Amano F. , Igimi S. , Romão C.V. , Teixeira M. . ( 2011;). Desulforubrerythrin from Campylobacter jejuni, a novel multidomain protein. J Biol Inorg Chem 16: 501–510 [CrossRef] [PubMed].
    [Google Scholar]
  43. Poole L.B. . ( 1996;). Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry 35: 65–75 [CrossRef] [PubMed].
    [Google Scholar]
  44. Porcelli I. , Reuter M. , Pearson B.M. , Wilhelm T. , van Vliet A.H.M. . ( 2013;). Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genomics 14: 616 [CrossRef] [PubMed].
    [Google Scholar]
  45. Poropatich K.O. , Fischer Walker C.L. , Black R.E. . ( 2010;). Quantifying the association between Campylobacter infection and Guillain-Barré syndrome: a systematic review. J Health Popul Nutr 28: 545–552 [CrossRef] [PubMed].
    [Google Scholar]
  46. Purdy D. , Cawthraw S. , Dickinson J.H. , Newell D.G. , Park S.F. . ( 1999;). Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol 65: 2540–2546 [PubMed].
    [Google Scholar]
  47. Reuter M. , van Vliet A.H. . ( 2013;). Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni . PLoS One 8: e54390 [CrossRef] [PubMed].
    [Google Scholar]
  48. Reuter M. , Mallett A. , Pearson B.M. , van Vliet A.H. . ( 2010;). Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76: 2122–2128 [CrossRef] [PubMed].
    [Google Scholar]
  49. Senior N.J. , Bagnall M.C. , Champion O.L. , Reynolds S.E. , La Ragione R.M. , Woodward M.J. , Salguero F.J. , Titball R.W. . ( 2011;). Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 60: 661–669 [CrossRef] [PubMed].
    [Google Scholar]
  50. Sharma C.M. , Hoffmann S. , Darfeuille F. , Reignier J. , Findeiß S. , Sittka A. , Chabas S. , Reiche K. , Hackermüller J. , other authors . ( 2010;). The primary transcriptome of the major human pathogen Helicobacter pylori . Nature 464: 250–255 [CrossRef] [PubMed].
    [Google Scholar]
  51. Shaw F.L. , Mulholland F. , Le Gall G. , Porcelli I. , Hart D.J. , Pearson B.M. , van Vliet A.H.M. . ( 2012;). Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genes. J Bacteriol 194: 3814–3823 doi:10.1128/JB.06586-11 [PubMed].[CrossRef]
    [Google Scholar]
  52. Stead D. , Park S.F. . ( 2000;). Roles of Fe superoxide dismutase and catalase in resistance of Campylobacter coli to freeze-thaw stress. Appl Environ Microbiol 66: 3110–3112 [CrossRef] [PubMed].
    [Google Scholar]
  53. Svensson S.L. , Davis L.M. , MacKichan J.K. , Allan B.J. , Pajaniappan M. , Thompson S.A. , Gaynor E.C. . ( 2009;). The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71: 253–272 [CrossRef] [PubMed].
    [Google Scholar]
  54. van Alphen L.B. , Wenzel C.Q. , Richards M.R. , Fodor C. , Ashmus R.A. , Stahl M. , Karlyshev A.V. , Wren B.W. , Stintzi A. , other authors . ( 2014;). Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni . PLoS One 9: e87051 [CrossRef] [PubMed].
    [Google Scholar]
  55. van der Stel A.X. , van Mourik A. , Heijmen-van Dijk L. , Parker C.T. , Kelly D.J. , van de Lest C.H. , van Putten J.P. , Wösten M.M. . ( 2015;). The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment. Environ Microbiol 17: 1049–1064 [CrossRef] [PubMed].
    [Google Scholar]
  56. van Vliet A.H.M. , Wooldridge K.G. , Ketley J.M. . ( 1998;). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180: 5291–5298 [PubMed].
    [Google Scholar]
  57. van Vliet A.H. , Baillon M.L. , Penn C.W. , Ketley J.M. . ( 1999;). Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181: 6371–6376 [PubMed].
    [Google Scholar]
  58. van Vliet A.H. , Baillon M.A. , Penn C.W. , Ketley J.M. . ( 2001;). The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance. FEMS Microbiol Lett 196: 189–193 [CrossRef] [PubMed].
    [Google Scholar]
  59. van Vliet A.H. , Ketley J.M. , Park S.F. , Penn C.W. . ( 2002;). The role of iron in Campylobacter gene regulation, meta bolism and oxidative stress defense. FEMS Microbiol Rev 26: 173–186 [CrossRef] [PubMed].
    [Google Scholar]
  60. Yamasaki M. , Igimi S. , Katayama Y. , Yamamoto S. , Amano F. . ( 2004;). Identification of an oxidative stress-sensitive protein from Campylobacter jejuni, homologous to rubredoxin oxidoreductase/rubrerythrin. FEMS Microbiol Lett 235: 57–63 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000109
Loading
/content/journal/micro/10.1099/mic.0.000109
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error