The foodborne bacterial pathogen is an obligate microaerophile that is exposed to atmospheric oxygen during transmission through the food chain. Survival under aerobic conditions requires the concerted control of oxidative stress systems, which in are intimately connected with iron metabolism via the PerR and Fur regulatory proteins. Here, we have characterized the roles of PerR in oxidative stress and motility phenotypes, and its regulon at the level of transcription, protein expression and promoter interactions. Insertional inactivation of in the reference strains NCTC 11168, 81-176 and 81116 did not result in any growth deficiencies, but strongly increased survival in atmospheric oxygen conditions, and allowed growth around filter discs infused with up to 30 % HO (8.8 M). Expression of catalase, alkyl hydroperoxide reductase, thioredoxin reductase and the Rrc desulforubrerythrin was increased in the mutant, and this was mediated at the transcriptional level as shown by electrophoretic mobility shift assays of the , and promoters using purified PerR. Differential RNA-sequencing analysis of a mutant allowed the identification of eight previously unknown transcription start sites of genes controlled by Fur and/or PerR. Finally, inactivation of in did not result in reduced motility, and did not reduce killing of wax moth larvae. In conclusion, PerR plays an important role in controlling oxidative stress resistance and aerobic survival of , but this role does not extend into control of motility and associated phenotypes.


Article metrics loading...

Loading full text...

Full text loading...



  1. Atack J.M., Harvey P., Jones M.A., Kelly D.J. (2008). The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificitiesJ Bacteriol 19052795290 [View Article][PubMed]. [Google Scholar]
  2. Baichoo N., Helmann J.D. (2002). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequenceJ Bacteriol 18458265832 [View Article][PubMed]. [Google Scholar]
  3. Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. (2009). meme suite: tools for motif discovery and searchingNucleic Acids Res 37(Web Server), W202W208 [View Article][PubMed]. [Google Scholar]
  4. Baillon M.L., van Vliet A.H.M., Ketley J.M., Constantinidou C., Penn C.W. (1999). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni J Bacteriol 18147984804[PubMed]. [Google Scholar]
  5. Belzer C., van Schendel B.A.M., Hoogenboezem T., Kusters J.G., Hermans P.W.M., van Vliet A.H.M., Kuipers E.J. (2011). PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes in Helicobacter hepaticus Eur J Microbiol Immunol (Bp) 1215222 [View Article][PubMed]. [Google Scholar]
  6. Butcher J., Stintzi A. (2013). The transcriptional landscape of Campylobacter jejuni under iron replete and iron limited growth conditionsPLoS One 8e79475 [View Article][PubMed]. [Google Scholar]
  7. Butcher J., Sarvan S., Brunzelle J.S., Couture J.F., Stintzi A. (2012). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulationProc Natl Acad Sci U S A 1091004710052 [View Article][PubMed]. [Google Scholar]
  8. Carrillo C.D., Taboada E., Nash J.H.E., Lanthier P., Kelly J., Lau P.C., Verhulp R., Mykytczuk O., Sy J., other authors. (2004). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA J Biol Chem 2792032720338 [View Article][PubMed]. [Google Scholar]
  9. Caux-Thang C., Parent A., Sethu R., Maïga A., Blondin G., Latour J.M., Duarte V. (2015). Single asparagine to arginine mutation allows PerR to switch from PerR box to Fur boxACS Chem Biol 10682686 [View Article][PubMed]. [Google Scholar]
  10. Champion O.L., Karlyshev A.V., Senior N.J., Woodward M., La Ragione R., Howard S.L., Wren B.W., Titball R.W. (2010). Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activityJ Infect Dis 201776782[PubMed]. [Google Scholar]
  11. Chaudhuri R.R., Yu L., Kanji A., Perkins T.T., Gardner P.P., Choudhary J., Maskell D.J., Grant A.J. (2011). Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptomeMicrobiology 15729222932 [View Article][PubMed]. [Google Scholar]
  12. Chuang M.H., Wu M.S., Lo W.L., Lin J.T., Wong C.H., Chiou S.H. (2006). The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone functionProc Natl Acad Sci U S A 10325522557 [View Article][PubMed]. [Google Scholar]
  13. Dufour V., Li J., Flint A., Rosenfeld E., Rivoal K., Georgeault S., Alazzam B., Ermel G., Stintzi A., other authors. (2013). Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respirationMicrobiology 15911651178 [View Article][PubMed]. [Google Scholar]
  14. Dugar G., Herbig A., Förstner K.U., Heidrich N., Reinhardt R., Nieselt K., Sharma C.M. (2013). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolatesPLoS Genet 9e1003495 [View Article][PubMed]. [Google Scholar]
  15. EFSA Panel on Biological Hazards (BIOHAZ) (2011). Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chainEFSA Journal 92105. [Google Scholar]
  16. Flint A., Stintzi A. (2015). Cj1386, an atypical hemin-binding protein, mediates hemin trafficking to KatA in Campylobacter jejuni J Bacteriol 19710021011 [View Article][PubMed]. [Google Scholar]
  17. Flint A., Sun Y.Q., Butcher J., Stahl M., Huang H., Stintzi A. (2014). Phenotypic screening of a targeted mutant library reveals Campylobacter jejuni defenses against oxidative stressInfect Immun 8222662275 [View Article][PubMed]. [Google Scholar]
  18. Gundogdu O., Bentley S.D., Holden M.T., Parkhill J., Dorrell N., Wren B.W. (2007). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequenceBMC Genomics 8162 [View Article][PubMed]. [Google Scholar]
  19. Gundogdu O., Mills D.C., Elmi A., Martin M.J., Wren B.W., Dorrell N. (2011). The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo J Bacteriol 19342384249 [View Article][PubMed]. [Google Scholar]
  20. Hazeleger W.C., Wouters J.A., Rombouts F.M., Abee T. (1998). Physiological activity of Campylobacter jejuni far below the minimal growth temperatureAppl Environ Microbiol 6439173922[PubMed]. [Google Scholar]
  21. Hendrixson D.R. (2006). A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalismMol Microbiol 6116461659 [View Article][PubMed]. [Google Scholar]
  22. Hockin N.L., Mock T., Mulholland F., Kopriva S., Malin G. (2012). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plantsPlant Physiol 158299312 [View Article][PubMed]. [Google Scholar]
  23. Hoffmann S., Otto C., Kurtz S., Sharma C.M., Khaitovich P., Vogel J., Stadler P.F., Hackermüller J. (2009). Fast mapping of short sequences with mismatches, insertions and deletions using index structuresPLOS Comput Biol 5e1000502 [View Article][PubMed]. [Google Scholar]
  24. Holmes K., Mulholland F., Pearson B.M., Pin C., McNicholl-Kennedy J., Ketley J.M., Wells J.M. (2005). Campylobacter jejuni gene expression in response to iron limitation and the role of FurMicrobiology 151243257 [View Article][PubMed]. [Google Scholar]
  25. Huergo L.F., Rahman H., Ibrahimovic A., Day C.J., Korolik V. (2013). Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxideJ Bacteriol 19519701978 [View Article][PubMed]. [Google Scholar]
  26. Hwang S., Jeon B., Yun J., Ryu S. (2011a). Roles of RpoN in the resistance of Campylobacter jejuni under various stress conditionsBMC Microbiol 11207 [View Article][PubMed]. [Google Scholar]
  27. Hwang S., Kim M., Ryu S., Jeon B. (2011b). Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni PLoS One 6e22300 [View Article][PubMed]. [Google Scholar]
  28. Hwang S., Zhang Q., Ryu S., Jeon B. (2012). Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni J Bacteriol 19468836891 [View Article][PubMed]. [Google Scholar]
  29. Janssen R., Krogfelt K.A., Cawthraw S.A., van Pelt W., Wagenaar J.A., Owen R.J. (2008). Host-pathogen interactions in Campylobacter infections: the host perspectiveClin Microbiol Rev 21505518 [View Article][PubMed]. [Google Scholar]
  30. Kendall J.J., Barrero-Tobon A.M., Hendrixson D.R., Kelly D.J. (2014). Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damageEnviron Microbiol 1611051121 [View Article][PubMed]. [Google Scholar]
  31. Kim M., Hwang S., Ryu S., Jeon B. (2011). Regulation of perR expression by iron and PerR in Campylobacter jejuni J Bacteriol 19361716178 [View Article][PubMed]. [Google Scholar]
  32. Kim J.C., Oh E., Hwang S., Ryu S., Jeon B. (2015). Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni Front Microbiol 6126 [View Article][PubMed]. [Google Scholar]
  33. Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factorsRedox Biol 2535562 [View Article][PubMed]. [Google Scholar]
  34. Mattatall N.R., Sanderson K.E. (1996). Salmonella typhimurium LT2 possesses three distinct 23S rRNA intervening sequencesJ Bacteriol 17822722278[PubMed]. [Google Scholar]
  35. McCarthy N.D., Gillespie I.A., Lawson A.J., Richardson J., Neal K.R., Hawtin P.R., Maiden M.C., O'Brien S.J. (2012). Molecular epidemiology of human Campylobacter jejuni shows association between seasonal and international patterns of diseaseEpidemiol Infect 14022472255 [View Article][PubMed]. [Google Scholar]
  36. Miller C.E., Williams P.H., Ketley J.M. (2009). Pumping iron: mechanisms for iron uptake by Campylobacter Microbiology 15531573165 [View Article][PubMed]. [Google Scholar]
  37. Nichols G.L., Richardson J.F., Sheppard S.K., Lane C., Sarran C. (2012). Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011BMJ Open 2e001179 [View Article][PubMed]. [Google Scholar]
  38. Nicol J.W., Helt G.A., Blanchard S.G. Jr, Raja A., Loraine A.E. (2009). The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasetsBioinformatics 2527302731 [View Article][PubMed]. [Google Scholar]
  39. Oh E., Jeon B. (2014). Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni PLoS One 9e87312 [View Article][PubMed]. [Google Scholar]
  40. Palyada K., Sun Y.Q., Flint A., Butcher J., Naikare H., Stintzi A. (2009). Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni BMC Genomics 10481 [View Article][PubMed]. [Google Scholar]
  41. Parkhill J., Wren B.W., Mungall K., Ketley J.M., Churcher C., Basham D., Chillingworth T., Davies R.M., Feltwell T., other authors. (2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequencesNature 403665668 [View Article][PubMed]. [Google Scholar]
  42. Pinto A.F., Todorovic S., Hildebrandt P., Yamazaki M., Amano F., Igimi S., Romão C.V., Teixeira M. (2011). Desulforubrerythrin from Campylobacter jejuni, a novel multidomain proteinJ Biol Inorg Chem 16501510 [View Article][PubMed]. [Google Scholar]
  43. Poole L.B. (1996). Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reductionBiochemistry 356575 [View Article][PubMed]. [Google Scholar]
  44. Porcelli I., Reuter M., Pearson B.M., Wilhelm T., van Vliet A.H.M. (2013). Parallel evolution of genome structure and transcriptional landscape in the EpsilonproteobacteriaBMC Genomics 14616 [View Article][PubMed]. [Google Scholar]
  45. Poropatich K.O., Fischer Walker C.L., Black R.E. (2010). Quantifying the association between Campylobacter infection and Guillain-Barré syndrome: a systematic reviewJ Health Popul Nutr 28545552 [View Article][PubMed]. [Google Scholar]
  46. Purdy D., Cawthraw S., Dickinson J.H., Newell D.G., Park S.F. (1999). Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonizationAppl Environ Microbiol 6525402546[PubMed]. [Google Scholar]
  47. Reuter M., van Vliet A.H. (2013). Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni PLoS One 8e54390 [View Article][PubMed]. [Google Scholar]
  48. Reuter M., Mallett A., Pearson B.M., van Vliet A.H. (2010). Biofilm formation by Campylobacter jejuni is increased under aerobic conditionsAppl Environ Microbiol 7621222128 [View Article][PubMed]. [Google Scholar]
  49. Senior N.J., Bagnall M.C., Champion O.L., Reynolds S.E., La Ragione R.M., Woodward M.J., Salguero F.J., Titball R.W. (2011). Galleria mellonella as an infection model for Campylobacter jejuni virulenceJ Med Microbiol 60661669 [View Article][PubMed]. [Google Scholar]
  50. Sharma C.M., Hoffmann S., Darfeuille F., Reignier J., Findeiß S., Sittka A., Chabas S., Reiche K., Hackermüller J., other authors. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori Nature 464250255 [View Article][PubMed]. [Google Scholar]
  51. Shaw F.L., Mulholland F., Le Gall G., Porcelli I., Hart D.J., Pearson B.M., van Vliet A.H.M. (2012). Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genesJ Bacteriol 19438143823doi:10.1128/JB.06586-11[PubMed] .[CrossRef] [Google Scholar]
  52. Stead D., Park S.F. (2000). Roles of Fe superoxide dismutase and catalase in resistance of Campylobacter coli to freeze-thaw stressAppl Environ Microbiol 6631103112 [View Article][PubMed]. [Google Scholar]
  53. Svensson S.L., Davis L.M., MacKichan J.K., Allan B.J., Pajaniappan M., Thompson S.A., Gaynor E.C. (2009). The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonizationMol Microbiol 71253272 [View Article][PubMed]. [Google Scholar]
  54. van Alphen L.B., Wenzel C.Q., Richards M.R., Fodor C., Ashmus R.A., Stahl M., Karlyshev A.V., Wren B.W., Stintzi A., other authors. (2014). Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni PLoS One 9e87051 [View Article][PubMed]. [Google Scholar]
  55. van der Stel A.X., van Mourik A., Heijmen-van Dijk L., Parker C.T., Kelly D.J., van de Lest C.H., van Putten J.P., Wösten M.M. (2015). The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environmentEnviron Microbiol 1710491064 [View Article][PubMed]. [Google Scholar]
  56. van Vliet A.H.M., Wooldridge K.G., Ketley J.M. (1998). Iron-responsive gene regulation in a Campylobacter jejuni fur mutantJ Bacteriol 18052915298[PubMed]. [Google Scholar]
  57. van Vliet A.H., Baillon M.L., Penn C.W., Ketley J.M. (1999). Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressorJ Bacteriol 18163716376[PubMed]. [Google Scholar]
  58. van Vliet A.H., Baillon M.A., Penn C.W., Ketley J.M. (2001). The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotoleranceFEMS Microbiol Lett 196189193 [View Article][PubMed]. [Google Scholar]
  59. van Vliet A.H., Ketley J.M., Park S.F., Penn C.W. (2002). The role of iron in Campylobacter gene regulation, meta bolism and oxidative stress defenseFEMS Microbiol Rev 26173186 [View Article][PubMed]. [Google Scholar]
  60. Yamasaki M., Igimi S., Katayama Y., Yamamoto S., Amano F. (2004). Identification of an oxidative stress-sensitive protein from Campylobacter jejuni, homologous to rubredoxin oxidoreductase/rubrerythrinFEMS Microbiol Lett 2355763 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error