1887

Abstract

is an obligate intracellular bacterium that can cause significant disease among a broad range of hosts. In humans, this organism may cause psittacosis, a respiratory disease that can spread to involve multiple organs, and in rare untreated cases may be fatal. There are ten known genotypes based on sequencing the major outer-membrane protein gene, , of Each genotype has overlapping host preferences and virulence characteristics. Recent studies have compared among other members of the family and showed that this species frequently switches hosts and has undergone multiple genomic rearrangements. In this study, we sequenced five genomes of strains representing four genotypes, A, B, D and E. Due to the known association of the type III secretion system (T3SS) and polymorphic outer-membrane proteins (Pmps) with host tropism and virulence potential, we performed a comparative analysis of these elements among these five strains along with a representative genome from each of the remaining six genotypes previously sequenced. We found significant genetic variation in the Pmps and tbl3SS genes that may partially explain differences noted in host infection and disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000097
2015-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1378.html?itemId=/content/journal/micro/10.1099/mic.0.000097&mimeType=html&fmt=ahah

References

  1. Abdelrahman Y.M., Belland R.J.. ( 2005;). The chlamydial developmental cycle. FEMS Microbiol Rev 29: 949–959 [CrossRef] [PubMed].
    [Google Scholar]
  2. Alikhan N.F., Petty N.K., Ben Zakour N.L., Beatson S.A.. ( 2011;). blast Ring Image Generator (brig): simple prokaryote genome comparisons. BMC Genomics 12: 402–412 [CrossRef] [PubMed].
    [Google Scholar]
  3. Assefa S., Keane T.M., Otto T.D., Newbold C., Berriman M.. ( 2009;). abacas: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25: 1968–1969 [CrossRef] [PubMed].
    [Google Scholar]
  4. Beeckman D.S.A., Vanrompay D.C.G.. ( 2009;). Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin Microbiol Infect 15: 11–17 [CrossRef] [PubMed].
    [Google Scholar]
  5. Beeckman D.S.A., Vanrompay D.C.G.. ( 2010;). Biology and intracellular pathogenesis of high or low virulent Chlamydophila psittaci strains in chicken macrophages. Vet Microbiol 141: 342–353 [CrossRef] [PubMed].
    [Google Scholar]
  6. Betts H.J., Twiggs L.E., Sal M.S., Wyrick P.B., Fields K.A.. ( 2008;). Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J Bacteriol 190: 1680–1690 [CrossRef] [PubMed].
    [Google Scholar]
  7. Darling A.E., Mau B., Perna N.T.. ( 2010;). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: e11147 [CrossRef] [PubMed].
    [Google Scholar]
  8. Davis D.J.. ( 1949;). The use of phenolized allantoic fluid antigen in the complement fixation test for psittacosis. J Immunol 62: 193–200 [PubMed].
    [Google Scholar]
  9. Fields K.A., Mead D.J., Dooley C.A., Hackstadt T.. ( 2003;). Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48: 671–683 [CrossRef] [PubMed].
    [Google Scholar]
  10. Francis T., Magill T.P.. ( 1938;). An unidentified virus producing acute meningitis and pneumonitis in experimental animals. J Exp Med 68: 147–160 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gaede W., Reckling K.F., Dresenkamp B., Kenklies S., Schubert E., Noack U., Irmscher H.M., Ludwig C., Hotzel H., Sachse K.. ( 2008;). Chlamydophila psittaci infections in humans during an outbreak of psittacosis from poultry in Germany. Zoonoses Public Health 55: 184–188 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gardner S.N., Hall B.G.. ( 2013;). When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS One 8: e81760 [CrossRef] [PubMed].
    [Google Scholar]
  13. Haag-Wackernagel D., Moch H.. ( 2004;). Health hazards posed by feral pigeons. J Infect 48: 307–313 [CrossRef] [PubMed].
    [Google Scholar]
  14. Harkinezhad T., Verminnen K., Van Droogenbroeck C., Vanrompay D.. ( 2007;). Chlamydophila psittaci genotype E/B transmission from African grey parrots to humans. J Med Microbiol 56: 1097–1100 [CrossRef] [PubMed].
    [Google Scholar]
  15. Harkinezhad T., Geens T., Vanrompay D.. ( 2009;). Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences. Vet Microbiol 135: 68–77 [CrossRef] [PubMed].
    [Google Scholar]
  16. Heddema E.R., Ter Sluis S., Buys J.A., Vandenbroucke-Grauls C.M.J.E., van Wijnen J.H., Visser C.E.. ( 2006a;). Prevalence of Chlamydophila psittaci in fecal droppings from feral pigeons in Amsterdam, The Netherlands. Appl Environ Microbiol 72: 4423–4425 [CrossRef] [PubMed].
    [Google Scholar]
  17. Heddema E.R., van Hannen E.J., Duim B., de Jongh B.M., Kaan J.A., van Kessel R., Lumeij J.T., Visser C.E., Vandenbroucke-Grauls C.M.J.E.. ( 2006b;). An outbreak of psittacosis due to Chlamydophila psittaci genotype A in a veterinary teaching hospital. J Med Microbiol 55: 1571–1575 [CrossRef] [PubMed].
    [Google Scholar]
  18. Heddema E.R., van Hannen E.J., Duim B., Vandenbroucke-Grauls C.M.J.E., Pannekoek Y.. ( 2006c;). Genotyping of Chlamydophila psittaci in human samples. Emerg Infect Dis 12: 1989–1990 [CrossRef] [PubMed].
    [Google Scholar]
  19. Herrmann M., Schuhmacher A., Mühldorfer I., Melchers K., Prothmann C., Dammeier S.. ( 2006;). Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res Microbiol 157: 513–524 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hotzel H., Berndt A., Melzer F., Sachse K.. ( 2004;). Occurrence of Chlamydiaceae spp. in a wild boar (Sus scrofa L.) population in Thuringia (Germany). Vet Microbiol 103: 121–126 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hsia R.C., Pannekoek Y., Ingerowski E., Bavoil P.M.. ( 1997;). Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25: 351–359 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hueck C.J.. ( 1998;). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379–433 [PubMed].
    [Google Scholar]
  23. Hunter S., Jones P., Mitchell A., Apweiler R., Attwood T.K., Bateman A., Bernard T., Binns D., Bork P., other authors. ( 2012;). InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: (D1), D306–D312 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., other authors. ( 2014;). InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236–1240 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kaleta E.F., Taday E.M.A.. ( 2003;). Avian host range of Chlamydophila spp. based on isolation, antigen detection and serology. Avian Pathol 32: 435–461 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kalman S., Mitchell W., Marathe R., Lammel C., Fan J., Hyman R.W., Olinger L., Grimwood J., Davis R.W., Stephens R.S.. ( 1999;). Comparative genomes of Chlamydia pneumoniae C. trachomatis. Nat Genet 21: 385–389 [CrossRef] [PubMed].
    [Google Scholar]
  27. Liechti G.W., Kuru E., Hall E., Kalinda A., Brun Y.V., VanNieuwenhze M., Maurelli A.T.. ( 2014;). A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506: 507–510 [CrossRef] [PubMed].
    [Google Scholar]
  28. Miller C.D., Songer J.R., Sullivan J.F.. ( 1987;). A twenty-five year review of laboratory-acquired human infections at the National Animal Disease Center. Am Ind Hyg Assoc J 48: 271–275 [CrossRef] [PubMed].
    [Google Scholar]
  29. Mitchell S.L., Wolff B.J., Thacker W.L., Ciembor P.G., Gregory C.R., Everett K.D.E., Ritchie B.W., Winchell J.M.. ( 2009;). Genotyping of Chlamydophila psittaci by real-time PCR and high-resolution melt analysis. J Clin Microbiol 47: 175–181 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mota L.J., Cornelis G.R.. ( 2005;). The bacterial injection kit: type III secretion systems. Ann Med 37: 234–249 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mukhopadhyay S., Clark A.P., Sullivan E.D., Miller R.D., Summersgill J.T.. ( 2004;). Detailed protocol for purification of Chlamydia pneumoniae elementary bodies. J Clin Microbiol 42: 3288–3290 [CrossRef] [PubMed].
    [Google Scholar]
  32. Muschiol S., Normark S., Henriques-Normark B., Subtil A.. ( 2009;). Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiol 9: 75 [CrossRef] [PubMed].
    [Google Scholar]
  33. Neuwirth E.. ( 2007; RColorBrewer: ColorBrewer palettes. R package version 1.0–2. .
  34. Page L.A.. ( 1966;). Interspecies transfer of psittacosis-LGV-trachoma agents: pathogenicity of two avian and two mammalian strains for eight species of birds and mammals. Am J Vet Res 27: 397–407 [PubMed].
    [Google Scholar]
  35. Pavelka M.S. Jr, Jacobs W.R. Jr. ( 1996;). Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol 178: 6496–6507 [PubMed].
    [Google Scholar]
  36. Peters J., Wilson D.P., Myers G., Timms P., Bavoil P.M.. ( 2007;). Type III secretion à la Chlamydia. Trends Microbiol 15: 241–251 [CrossRef] [PubMed].
    [Google Scholar]
  37. Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F., White O., Hickey E.K., Peterson J., Utterback T., other authors. ( 2000;). Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28: 1397–1406 [CrossRef] [PubMed].
    [Google Scholar]
  38. Read T.D., Myers G.S.A., Brunham R.C., Nelson W.C., Paulsen I.T., Heidelberg J., Holtzapple E., Khouri H., Federova N.B., other authors. ( 2003;). Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31: 2134–2147 [CrossRef] [PubMed].
    [Google Scholar]
  39. Read T.D., Joseph S.J., Didelot X., Liang B., Patel L., Dean D.. ( 2013;). Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. MBio 4: e00604–e00612 [CrossRef] [PubMed].
    [Google Scholar]
  40. Rockey D.D., Lenart J., Stephens R.S.. ( 2000;). Genome sequencing and our understanding of Chlamydiae. Infect Immun 68: 5473–5479 [CrossRef] [PubMed].
    [Google Scholar]
  41. Rambaut A.. ( 2015; FigTree. 1.4.2 edn. http://tree.bio.ed.ac.uk/software/figtree/.
  42. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. ( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539 [CrossRef] [PubMed].
    [Google Scholar]
  43. Smith K.A., Campbell C.T., Murphy J., Stobierski M.G., Tengelsen L.A.. ( 2011;). Compendium of Measures to Control Chlamydophila psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2010 National Association of State Public Health Veterinarians (NASPHV). J Exot Pet Med 20: 32–45 [CrossRef].
    [Google Scholar]
  44. Somboonna N., Wan R., Ojcius D.M., Pettengill M.A., Joseph S.J., Chang A., Hsu R., Read T.D., Dean D.. ( 2011;). Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages. MBio 2: e00045–e11 [CrossRef] [PubMed].
    [Google Scholar]
  45. Stamatakis A.. ( 2014;). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313 [CrossRef] [PubMed].
    [Google Scholar]
  46. Stephens R.S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R.L., other authors. ( 1998;). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754–759 [CrossRef] [PubMed].
    [Google Scholar]
  47. Stone C.B., Johnson D.L., Bulir D.C., Gilchrist J.D., Mahony J.B.. ( 2008;). Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae. J Bacteriol 190: 6580–6588 [CrossRef] [PubMed].
    [Google Scholar]
  48. Thomson N.R., Yeats C., Bell K., Holden M.T.G., Bentley S.D., Livingstone M., Cerdeño-Tárraga A.M., Harris B., Doggett J., other authors. ( 2005;). The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 15: 629–640 [CrossRef] [PubMed].
    [Google Scholar]
  49. Valdivia R.H.. ( 2008;). Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11: 53–59 [CrossRef] [PubMed].
    [Google Scholar]
  50. Van Lent S., Piet J.R., Beeckman D., van der Ende A., Van Nieuwerburgh F., Bavoil P., Myers G., Vanrompay D., Pannekoek Y.. ( 2012;). Full genome sequences of all nine Chlamydia psittaci genotype reference strains. J Bacteriol 194: 6930–6931 [CrossRef] [PubMed].
    [Google Scholar]
  51. Voigt A., Schöfl G., Saluz H.P.. ( 2012;). The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. PLoS One 7: e35097 [CrossRef] [PubMed].
    [Google Scholar]
  52. Warnes G.R., Bolker B., Lumley T.. ( 2014; Gplots: Various R programming tools for plotting data. R package version 2.6.0.. .
  53. Wreghitt T.G., Taylor C.E.D.. ( 1988;). Incidence of respiratory tract chlamydial infections and importation of psittacine birds. Lancet 331: 582 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000097
Loading
/content/journal/micro/10.1099/mic.0.000097
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error