1887

Abstract

is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa . The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between and are not well understood. Whilst some studies suggest the ability of to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between and , address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen–protozoa interaction will assist in a better understanding of lifestyle and in the development of novel antibacterial drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000075
2015-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/933.html?itemId=/content/journal/micro/10.1099/mic.0.000075&mimeType=html&fmt=ahah

References

  1. Abd H., Wretlind B., Saeed A., Idsund E., Hultenby K., Sandström G.. 2008; Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii. J Eukaryot Microbiol55:235–243 [CrossRef][PubMed]
    [Google Scholar]
  2. Abu-Zant A., Asare R., Graham J. E., Abu Kwaik Y.. 2006; Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun74:3021–3026 [CrossRef][PubMed]
    [Google Scholar]
  3. Al-Khodor S., Kalachikov S., Morozova I., Price C. T., Abu Kwaik Y.. 2009; The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun77:374–386 [CrossRef][PubMed]
    [Google Scholar]
  4. Albert M. J.. 2014; Vaccines against Campylobacter jejuni. Austin J Clin Immunol1:1013
    [Google Scholar]
  5. Alsam S., Jeong S. R., Sissons J., Dudley R., Kim K. S., Khan N. A.. 2006; Escherichia coli interactions with Acanthamoeba: a symbiosis with environmental and clinical implications. J Med Microbiol55:689–694 [CrossRef][PubMed]
    [Google Scholar]
  6. Altekruse S. F., Stern N. J., Fields P. I., Swerdlow D. L.. 1999; Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis5:28–35 [CrossRef][PubMed]
    [Google Scholar]
  7. Ashgar S. S., Oldfield N. J., Wooldridge K. G., Jones M. A., Irving G. J., Turner D. P., Ala’Aldeen D. A.. 2007; CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol189:1856–1865 [CrossRef][PubMed]
    [Google Scholar]
  8. Aurass P., Pless B., Rydzewski K., Holland G., Bannert N., Flieger A.. 2009; bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol75:4506–4515 [CrossRef][PubMed]
    [Google Scholar]
  9. Axelsson-Olsson D., Waldenström J., Broman T., Olsen B., Holmberg M.. 2005; Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl Environ Microbiol71:987–992 [CrossRef][PubMed]
    [Google Scholar]
  10. Axelsson-Olsson D., Ellström P., Waldenström J., Haemig P. D., Brudin L., Olsen B.. 2007; Acanthamoeba-Campylobacter coculture as a novel method for enrichment of Campylobacter species. Appl Environ Microbiol73:6864–6869 [CrossRef][PubMed]
    [Google Scholar]
  11. Axelsson-Olsson D., Olofsson J., Svensson L., Griekspoor P., Waldenström J., Ellström P., Olsen B.. 2010;a). Amoebae and algae can prolong the survival of Campylobacter species in co-culture. Exp Parasitol126:59–64 [CrossRef][PubMed]
    [Google Scholar]
  12. Axelsson-Olsson D., Svensson L., Olofsson J., Salomon P., Waldenström J., Ellström P., Olsen B.. 2010;b). Increase in acid tolerance of Campylobacter jejuni through coincubation with amoebae. Appl Environ Microbiol76:4194–4200 [CrossRef][PubMed]
    [Google Scholar]
  13. Bachtiar B. M., Coloe P. J., Fry B. N.. 2007; Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium-host interactions. FEMS Immunol Med Microbiol49:149–154 [CrossRef][PubMed]
    [Google Scholar]
  14. Backert S., Hofreuter D.. 2013; Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods95:8–23 [CrossRef][PubMed]
    [Google Scholar]
  15. Bacon D. J., Szymanski C. M., Burr D. H., Silver R. P., Alm R. A., Guerry P.. 2001; A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol Microbiol40:769–777 [CrossRef][PubMed]
    [Google Scholar]
  16. Bæk K. T., Vegge C. S., Brøndsted L.. 2011; HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni.. Gut Pathog3:13 [CrossRef][PubMed]
    [Google Scholar]
  17. Bandyopadhyay P., Xiao H., Coleman H. A., Price-Whelan A., Steinman H. M.. 2004; Icm/Dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts. Infect Immun72:4541–4551 [CrossRef][PubMed]
    [Google Scholar]
  18. Baré J., Sabbe K., Huws S., Vercauteren D., Braeckmans K., van Gremberghe I., Favoreel H., Houf K.. 2010; Influence of temperature, oxygen and bacterial strain identity on the association of Campylobacter jejuni with Acanthamoeba castellanii. FEMS Microbiol Ecol74:371–381 [CrossRef][PubMed]
    [Google Scholar]
  19. Barker J., Brown M. R.. 1995; Speculations on the influence of infecting phenotype on virulence and antibiotic susceptibility of Legionella pneumophila. J Antimicrob Chemother36:7–21 [CrossRef][PubMed]
    [Google Scholar]
  20. Bleasdale B., Lott P. J., Jagannathan A., Stevens M. P., Birtles R. J., Wigley P.. 2009; The Salmonella pathogenicity island 2-encoded type III secretion system is essential for the survival of Salmonella enterica serovar Typhimurium in free-living amoebae. Appl Environ Microbiol75:1793–1795 [CrossRef][PubMed]
    [Google Scholar]
  21. Bleumink-Pluym N. M., van Alphen L. B., Bouwman L. I., Wösten M. M., van Putten J. P.. 2013; Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity. PLoS Pathog9:e1003393 [CrossRef][PubMed]
    [Google Scholar]
  22. Bolton F. J., Robertson L.. 1982; A selective medium for isolating Campylobacter jejuni/coli. J Clin Pathol35:462–467 [CrossRef][PubMed]
    [Google Scholar]
  23. Bonifait L., Charette S. J., Filion G., Gottschalk M., Grenier D.. 2011; Amoeba host model for evaluation of Streptococcus suis virulence. Appl Environ Microbiol77:6271–6273 [CrossRef][PubMed]
    [Google Scholar]
  24. Breidenstein E. B. M., Janot L., Strehmel J., Fernandez L., Taylor P. K., Kukavica-Ibrulj I., Gellatly S. L., Levesque R. C., Overhage J., Hancock R. E.. 2012; The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS ONE7:e49123 [CrossRef][PubMed]
    [Google Scholar]
  25. Buelow D. R., Christensen J. E., Neal-McKinney J. M., Konkel M. E.. 2011; Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI. Mol Microbiol80:1296–1312 [CrossRef][PubMed]
    [Google Scholar]
  26. Bui X. T., Winding A., Qvortrup K., Wolff A., Bang D. D., Creuzenet C.. 2012;a). Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen. Environ Microbiol14:2034–2047 [CrossRef][PubMed]
    [Google Scholar]
  27. Bui X. T., Qvortrup K., Wolff A., Bang D. D., Creuzenet C.. 2012;b). Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii. BMC Microbiol12:232 [CrossRef][PubMed]
    [Google Scholar]
  28. Candon H. L., Allan B. J., Fraley C. D., Gaynor E. C.. 2007; Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. J Bacteriol189:8099–8108 [CrossRef][PubMed]
    [Google Scholar]
  29. Chekabab S. M., Daigle F., Charette S. J., Dozois C. M., Harel J.. 2012; Survival of enterohemorrhagic Escherichia coli in the presence of Acanthamoeba castellanii and its dependence on Pho regulon. MicrobiologyOpen1:427–437 [CrossRef][PubMed]
    [Google Scholar]
  30. Christensen J. E., Pacheco S. A., Konkel M. E.. 2009; Identification of a Campylobacter jejuni-secreted protein required for maximal invasion of host cells. Mol Microbiol73:650–662 [CrossRef][PubMed]
    [Google Scholar]
  31. Cohn M. T., Ingmer H., Mulholland F., Jørgensen K., Wells J. M., Brøndsted L.. 2007; Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol73:7803–7813 [CrossRef][PubMed]
    [Google Scholar]
  32. Corry J. E. L., Post D. E., Colin P., Laisney M. J.. 1995; Culture media for the isolation of campylobacters. Int J Food Microbiol26:43–76 [CrossRef][PubMed]
    [Google Scholar]
  33. Crépin S., Chekabab S. M., Le Bihan G., Bertrand N., Dozois C. M., Harel J.. 2011; The Pho regulon and the pathogenesis of Escherichia coli. Vet Microbiol153:82–88 [CrossRef][PubMed]
    [Google Scholar]
  34. Daines D. A., Wright L. F., Chaffin D. O., Rubens C. E., Silver R. P.. 2000; NeuD plays a role in the synthesis of sialic acid in Escherichia coli K1. FEMS Microbiol Lett189:281–284 [CrossRef][PubMed]
    [Google Scholar]
  35. Dasti J. I., Tareen A. M., Lugert R., Zautner A. E., Gross U.. 2010; Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol300:205–211 [CrossRef][PubMed]
    [Google Scholar]
  36. Day W. A. J. Jr, Sajecki J. L., Pitts T. M., Joens L. A.. 2000; Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun68:6337–6345 [CrossRef][PubMed]
    [Google Scholar]
  37. Dietrich C., Heuner K., Brand B. C., Hacker J., Steinert M.. 2001; Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun69:2116–2122 [CrossRef][PubMed]
    [Google Scholar]
  38. Dirks B. P., Quinlan J. J.. 2014; Development of a modified gentamicin protection assay to investigate the interaction between Campylobacter jejuni and Acanthamoeba castellanii ATCC 30010. Exp Parasitol140:39–43 [CrossRef][PubMed]
    [Google Scholar]
  39. Drozd M., Gangaiah D., Liu Z., Rajashekara G.. 2011; Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses. PLoS ONE6:e26336 [CrossRef][PubMed]
    [Google Scholar]
  40. Ferhat M., Atlan D., Vianney A., Lazzaroni J. C., Doublet P., Gilbert C.. 2009; The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS ONE4:e7732 [CrossRef][PubMed]
    [Google Scholar]
  41. Fields J. A., Thompson S. A.. 2008; Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. J Bacteriol190:3411–3416 [CrossRef][PubMed]
    [Google Scholar]
  42. Filloux A., Hachani A., Bleves S.. 2008; The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology154:1570–1583 [CrossRef][PubMed]
    [Google Scholar]
  43. Flint A., Sun Y. Q., Stintzi A.. 2012; Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol194:334–345 [CrossRef][PubMed]
    [Google Scholar]
  44. Forsbach-Birk V., McNealy T., Shi C. W., Lynch D., Marre R.. 2004; Reduced expression of the global regulator protein CsrA in Legionella pneumophila affects virulence-associated regulators and growth in Acanthamoeba castellanii.. Int J Med Microbiol294:15–25 [CrossRef][PubMed]
    [Google Scholar]
  45. Friis L. M., Pin C., Pearson B. M., Wells J. M.. 2005; In vitro cell culture methods for investigating Campylobacter invasion mechanisms. J Microbiol Methods61:145–160 [CrossRef][PubMed]
    [Google Scholar]
  46. Gaynor E. C., Wells D. H., MacKichan J. K., Falkow S.. 2005; The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol56:8–27 [CrossRef][PubMed]
    [Google Scholar]
  47. Gebhart C. J., Edmonds P., Ward G. E., Kurtz H. J., Brenner D. J.. 1985;Campylobacter hyointestinalis’ sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J Clin Microbiol21:715–720[PubMed]
    [Google Scholar]
  48. Gilbert M., Karwaski M. F., Bernatchez S., Young N. M., Taboada E., Michniewicz J., Cunningham A. M., Wakarchuk W. W.. 2002; The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem277:327–337 [CrossRef][PubMed]
    [Google Scholar]
  49. Greub G., Raoult D.. 2004; Microorganisms resistant to free-living amoebae. Clin Microbiol Rev17:413–433 [CrossRef][PubMed]
    [Google Scholar]
  50. Griekspoor P., Olofsson J., Axelsson-Olsson D., Waldenström J., Olsen B.. 2013; Multilocus sequence typing and FlaA sequencing reveal the genetic stability of Campylobacter jejuni enrichment during coculture with Acanthamoeba polyphaga. Appl Environ Microbiol79:2477–2479 [CrossRef][PubMed]
    [Google Scholar]
  51. Guerry P., Ewing C. P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S.. 2006; Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol60:299–311 [CrossRef][PubMed]
    [Google Scholar]
  52. Habyarimana F., Al-Khodor S., Kalia A., Graham J. E., Price C. T., Garcia M. T., Kwaik Y. A.. 2008; Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol10:1460–1474 [CrossRef][PubMed]
    [Google Scholar]
  53. Heuner K., Steinert M.. 2003; The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol293:133–143 [CrossRef][PubMed]
    [Google Scholar]
  54. Hickey T. E., Majam G., Guerry P.. 2005; Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect Immun73:5194–5197 [CrossRef][PubMed]
    [Google Scholar]
  55. Hoffmann C., Harrison C. F., Hilbi H.. 2014; The natural alternative: protozoa as cellular models for Legionella infection. Cell Microbiol16:15–26 [CrossRef][PubMed]
    [Google Scholar]
  56. Hu L., Kopecko D. J.. 1999; Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun67:4171–4182[PubMed]
    [Google Scholar]
  57. Inglis T. J., Robertson T., Woods D. E., Dutton N., Chang B. J.. 2003; Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis. Infect Immun71:2280–2282 [CrossRef][PubMed]
    [Google Scholar]
  58. Joshua G. W., Guthrie-Irons C., Karlyshev A. V., Wren B. W.. 2006; Biofilm formation in Campylobacter jejuni. Microbiology152:387–396 [CrossRef][PubMed]
    [Google Scholar]
  59. Jung S. Y., Matin A., Kim K. S., Khan N. A.. 2007; The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba. Int J Parasitol37:417–423 [CrossRef][PubMed]
    [Google Scholar]
  60. Karlyshev A. V., Wren B. W.. 2001; Detection and initial characterization of novel capsular polysaccharide among diverse Campylobacter jejuni strains using alcian blue dye. J Clin Microbiol39:279–284 [CrossRef][PubMed]
    [Google Scholar]
  61. Karlyshev A. V., Champion O. L., Churcher C., Brisson J. R., Jarrell H. C., Gilbert M., Brochu D., St Michael F., Li J. et al. 2005; Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol55:90–103 [CrossRef][PubMed]
    [Google Scholar]
  62. Kennedy G. M., Morisaki J. H., Champion P. A.. 2012; Conserved mechanisms of Mycobacterium marinum pathogenesis within the environmental amoeba Acanthamoeba castellanii. Appl Environ Microbiol78:2049–2052 [CrossRef][PubMed]
    [Google Scholar]
  63. Khan N. A.. 2006; Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev30:564–595 [CrossRef][PubMed]
    [Google Scholar]
  64. Kiehlbauch J. A., Albach R. A., Baum L. L., Chang K. P.. 1985; Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect Immun48:446–451[PubMed]
    [Google Scholar]
  65. King C. H., Shotts E. B. Jr, Wooley R. E., Porter K. G.. 1988; Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol54:3023–3033[PubMed]
    [Google Scholar]
  66. Konkel M. E., Cieplak W. Jr. 1992; Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization. Infect Immun60:4945–4949[PubMed]
    [Google Scholar]
  67. Konkel M. E., Garvis S. G., Tipton S. L., Anderson D. E. Jr, Cieplak W. Jr. 1997; Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol24:953–963 [CrossRef][PubMed]
    [Google Scholar]
  68. Konkel M. E., Kim B. J., Rivera-Amill V., Garvis S. G.. 1999; Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol32:691–701 [CrossRef][PubMed]
    [Google Scholar]
  69. Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., Mickelson J.. 2004; Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol186:3296–3303 [CrossRef][PubMed]
    [Google Scholar]
  70. Konkel M. E., Larson C. L., Flanagan R. C.. 2010; Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. J Bacteriol192:68–76 [CrossRef][PubMed]
    [Google Scholar]
  71. Lertpiriyapong K., Gamazon E. R., Feng Y., Park D. S., Pang J., Botka G., Graffam M. E., Ge Z., Fox J. G.. 2012; Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE7:e42842 [CrossRef][PubMed]
    [Google Scholar]
  72. Li X. H., Zeng Y. L., Gao Y., Zheng X. C., Zhang Q. F., Zhou S. N., Lu Y. J.. 2010; The ClpP protease homologue is required for the transmission traits and cell division of the pathogen Legionella pneumophila. BMC Microbiol10:54 [CrossRef][PubMed]
    [Google Scholar]
  73. Linton D., Karlyshev A. V., Hitchen P. G., Morris H. R., Dell A., Gregson N. A., Wren B. W.. 2000; Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol35:1120–1134 [CrossRef][PubMed]
    [Google Scholar]
  74. Liu X., Gao B., Novik V., Galán J. E.. 2012; Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog8:e1002562 [CrossRef][PubMed]
    [Google Scholar]
  75. Louwen R., Heikema A., van Belkum A., Ott A., Gilbert M., Ang W., Endtz H. P., Bergman M. P., Nieuwenhuis E. E.. 2008; The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Infect Immun76:4431–4438 [CrossRef][PubMed]
    [Google Scholar]
  76. Louwen R., Nieuwenhuis E. E., van Marrewijk L., Horst-Kreft D., de Ruiter L., Heikema A. P., van Wamel W. J., Wagenaar J. A., Endtz H. P. et al. 2012; Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures. Infect Immun80:3307–3318 [CrossRef][PubMed]
    [Google Scholar]
  77. MacKichan J. K., Gaynor E. C., Chang C., Cawthraw S., Newell D. G., Miller J. F., Falkow S.. 2004; The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol54:1269–1286 [CrossRef][PubMed]
    [Google Scholar]
  78. Mahdavi J., Pirinccioglu N., Oldfield N. J., Carlsohn E., Stoof J., Aslam A., Self T., Cawthraw S. A., Petrovska L. et al. 2014; A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol4:130202 [CrossRef][PubMed]
    [Google Scholar]
  79. March C., Cano V., Moranta D., Llobet E., Pérez-Gutiérrez C., Tomás J. M., Suárez T., Garmendia J., Bengoechea J. A.. 2013; Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS ONE8:e56847 [CrossRef][PubMed]
    [Google Scholar]
  80. Monteville M. R., Yoon J. E., Konkel M. E.. 2003; Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology149:153–165 [CrossRef][PubMed]
    [Google Scholar]
  81. Moore J. E., Corcoran D., Dooley J. S. G., Fanning S., Lucey B., Matsuda M., McDowell D. A., Mégraud F., Millar B. C. et al. 2005; Campylobacter. Vet Res36:351–382 [CrossRef][PubMed]
    [Google Scholar]
  82. Moser I., Schroeder W., Salnikow J.. 1997; Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett157:233–238 [CrossRef][PubMed]
    [Google Scholar]
  83. Naikare H., Palyada K., Panciera R., Marlow D., Stintzi A.. 2006; Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun74:5433–5444 [CrossRef][PubMed]
    [Google Scholar]
  84. Naito M., Frirdich E., Fields J. A., Pryjma M., Li J., Cameron A., Gilbert M., Thompson S. A., Gaynor E. C.. 2010; Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol192:2182–2192 [CrossRef][PubMed]
    [Google Scholar]
  85. Neidig A., Yeung A. T., Rosay T., Tettmann B., Strempel N., Rueger M., Lesouhaitier O., Overhage J.. 2013; TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol13:77 [CrossRef][PubMed]
    [Google Scholar]
  86. Novik V., Hofreuter D., Galán J. E.. 2009; Characterization of a Campylobacter jejuni VirK protein homolog as a novel virulence determinant. Infect Immun77:5428–5436 [CrossRef][PubMed]
    [Google Scholar]
  87. Novik V., Hofreuter D., Galán J. E.. 2010; Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun78:3540–3553 [CrossRef][PubMed]
    [Google Scholar]
  88. Olofsson J., Axelsson-Olsson D., Brudin L., Olsen B., Ellström P.. 2013; Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles. PLoS ONE8:e78873 [CrossRef][PubMed]
    [Google Scholar]
  89. Park S. F.. 2002; The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol74:177–188 [CrossRef][PubMed]
    [Google Scholar]
  90. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. et al. 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668 [CrossRef][PubMed]
    [Google Scholar]
  91. Polesky A. H., Ross J. T., Falkow S., Tompkins L. S.. 2001; Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect Immun69:977–987 [CrossRef][PubMed]
    [Google Scholar]
  92. Poly F., Read T., Tribble D. R., Baqar S., Lorenzo M., Guerry P.. 2007; Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect Immun75:3425–3433 [CrossRef][PubMed]
    [Google Scholar]
  93. Portier E., Zheng H., Sahr T., Burnside D. M., Mallama C., Buchrieser C., Cianciotto N. P., Héchard Y.. 2014; IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  94. Price C. T., Al-Khodor S., Al-Quadan T., Abu Kwaik Y.. 2010; Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun78:2079–2088 [CrossRef][PubMed]
    [Google Scholar]
  95. Pukatzki S., Kessin R. H., Mekalanos J. J.. 2002; The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A99:3159–3164 [CrossRef][PubMed]
    [Google Scholar]
  96. Ramos H. C., Rumbo M., Sirard J. C.. 2004; Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol12:509–517 [CrossRef][PubMed]
    [Google Scholar]
  97. Robey M., Cianciotto N. P.. 2002; Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun70:5659–5669 [CrossRef][PubMed]
    [Google Scholar]
  98. Rønn R., McCaig A. E., Griffiths B. S., Prosser J. I.. 2002; Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol68:6094–6105 [CrossRef][PubMed]
    [Google Scholar]
  99. Samuelson D. R., Eucker T. P., Bell J. A., Dybas L., Mansfield L. S., Konkel M. E.. 2013; The Campylobacter jejuni CiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Commun Signal11:79 [CrossRef][PubMed]
    [Google Scholar]
  100. Sandström G., Saeed A., Abd H.. 2011; Acanthamoeba-bacteria: a model to study host interaction with human pathogens. Curr Drug Targets12:936–941 [CrossRef][PubMed]
    [Google Scholar]
  101. Siddiqui R., Khan N. A.. 2012;a). War of the microbial worlds: who is the beneficiary in Acanthamoeba-bacterial interactions?. Exp Parasitol130:311–313 [CrossRef][PubMed]
    [Google Scholar]
  102. Siddiqui R., Khan N. A.. 2012;b). Acanthamoeba is an evolutionary ancestor of macrophages: a myth or reality?. Exp Parasitol130:95–97 [CrossRef][PubMed]
    [Google Scholar]
  103. Siddiqui R., Khan N. A.. 2012;c). Biology and pathogenesis of Acanthamoeba. Parasit Vectors5:6 [CrossRef][PubMed]
    [Google Scholar]
  104. Siddiqui R., Malik H., Sagheer M., Jung S. Y., Khan N. A.. 2011; The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba. Exp Parasitol128:409–413 [CrossRef][PubMed]
    [Google Scholar]
  105. Snelling W. J., McKenna J. P., Lecky D. M., Dooley J. S. G.. 2005; Survival of Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol71:5560–5571 [CrossRef][PubMed]
    [Google Scholar]
  106. Snelling W. J., Stern N. J., Lowery C. J., Moore J. E., Gibbons E., Baker C., Dooley J. S. G.. 2008; Colonization of broilers by Campylobacter jejuni internalized within Acanthamoeba castellanii. Arch Microbiol189:175–179 [CrossRef][PubMed]
    [Google Scholar]
  107. Song Y. C., Jin S., Louie H., Ng D., Lau R., Zhang Y., Weerasekera R., Al Rashid S., Ward L. A. et al. 2004; FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol53:541–553 [CrossRef][PubMed]
    [Google Scholar]
  108. Svensson S. L., Davis L. M., MacKichan J. K., Allan B. J., Pajaniappan M., Thompson S. A., Gaynor E. C.. 2009; The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol71:253–272 [CrossRef][PubMed]
    [Google Scholar]
  109. Szymanski C. M., Burr D. H., Guerry P.. 2002; Campylobacter protein glycosylation affects host cell interactions. Infect Immun70:2242–2244 [CrossRef][PubMed]
    [Google Scholar]
  110. Theoret J. R., Cooper K. K., Glock R. D., Joens L. A.. 2011; A Campylobacter jejuni Dps homolog has a role in intracellular survival and in the development of campylobacterosis in neonate piglets. Foodborne Pathog Dis8:1263–1268 [CrossRef][PubMed]
    [Google Scholar]
  111. Thomas V., McDonnell G., Denyer S. P., Maillard J. Y.. 2010; Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev34:231–259 [CrossRef][PubMed]
    [Google Scholar]
  112. Vaerewijck M. J. M., Baré J., Lambrecht E., Sabbe K., Houf K.. 2014; Interactions of foodborne pathogens with free-living protozoa: potential consequences for food safety. Compr Rev Food Sci Food Safety13:924–944 [CrossRef]
    [Google Scholar]
  113. Valeru S. P., Wai S. N., Saeed A., Sandström G., Abd H.. 2012; ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res Notes5:33 [CrossRef][PubMed]
    [Google Scholar]
  114. Valeru S. P., Shanan S., Alossimi H., Saeed A., Sandström G., Abd H.. 2014; Lack of outer membrane protein A enhances the release of outer membrane vesicles and survival of Vibrio cholerae and suppresses viability of Acanthamoeba castellanii. Int J Microbiol2014:610190 [CrossRef][PubMed]
    [Google Scholar]
  115. Vucic S., Kiernan M. C., Cornblath D. R.. 2009; Guillain-Barré syndrome: an update. J Clin Neurosci16:733–741 [CrossRef][PubMed]
    [Google Scholar]
  116. Wassenaar T. M., Bleumink-Pluym N. M., van der Zeijst B. A.. 1991; Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J10:2055–2061[PubMed]
    [Google Scholar]
  117. Winiecka-Krusnell J., Linder E.. 2001; Bacterial infections of free-living amoebae. Res Microbiol152:613–619 [CrossRef][PubMed]
    [Google Scholar]
  118. Young K. T., Davis L. M., Dirita V. J.. 2007; Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol5:665–679 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000075
Loading
/content/journal/micro/10.1099/mic.0.000075
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error