is a major aetiological agent in the development of various gastroduodenal diseases. Its persistence in gastric mucosa is determined by the interaction between various host, microbial and environmental factors. The bacterium colonizes the gastric epithelium and induces activation of various chemokine mediators, including NFκB, the master regulator of inflammation. infection is also associated with an increase in expression of cell cycle regulators, thereby leading to mucosal cell hyper-proliferation. Thus, associated infections manifest activation of key host response events, which inadvertently could lead to the establishment of chronic infection and neoplastic progression. This article reviews and elaborates the current knowledge in -induced activation of various host signalling pathways that could promote cancer development. Special focus is placed on the inflammatory and proliferative responses that could serve as suitable biomarkers of infection, since a sustained cell proliferation in an environment rich in inflammatory cells is characteristic in associated gastric malignancies. Here, the role of ERK and WNT signalling in induced activation of inflammatory and proliferative responses respectively is discussed in detail. An in depth analysis of the underlying signalling pathways and interacting partners causing alterations in these crucial host responses could contribute to the development of successful therapeutic strategies for the prevention, management and treatment of infection.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ando T., Kusugami K., Ohsuga M., Ina K., Shinoda M., Konagaya T., Sakai T., Imada A., Kasuga N. et al. (1998). Differential normalization of mucosal interleukin-8 and interleukin-6 activity after Helicobacter pylori eradication. Infect Immun 66, 47424747.[PubMed] [Google Scholar]
  2. Asim M., Chaturvedi R., Hoge S., Lewis N. D., Singh K., Barry D. P., Algood H. S., de Sablet T., Gobert A. P., Wilson K. T. (2010). Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator protein-1 complex that causes apoptosis in macrophages. J Biol Chem 285, 2034320357. [View Article][PubMed] [Google Scholar]
  3. Avruch J., Khokhlatchev A., Kyriakis J. M., Luo Z., Tzivion G., Vavvas D., Zhang X. F. (2001). Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56, 127155. [View Article][PubMed] [Google Scholar]
  4. Backert S., Naumann M. (2010). What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori . Trends Microbiol 18, 479486. [View Article][PubMed] [Google Scholar]
  5. Backert S., Selbach M. (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10, 15731581.[CrossRef] [Google Scholar]
  6. Baud, V. & Karim, M. (2009). Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov8, 33–40.
  7. Bechi P., Balzi M., Becciolini A., Maugeri A., Raggi C. C., Amorosi A., Dei R. (1996). Helicobacter pylori and cell proliferation of the gastric mucosa: possible implications for gastric carcinogenesis. Am J Gastroenterol 91, 271276.[PubMed] [Google Scholar]
  8. Bhattacharyya A., Pathak S., Datta S., Chattopadhyay S., Basu J., Kundu M. (2002). Mitogen-activated protein kinases and nuclear factor-κB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. Biochem J 368, 121129. [View Article][PubMed] [Google Scholar]
  9. Blaser M. J. (1998). Helicobacter pylori and gastric diseases. BMJ 316, 15071510. [View Article][PubMed] [Google Scholar]
  10. Bodger K., Crabtree J. E. (1998). Helicobacter pylori and gastric inflammation. Br Med Bull 54, 139150. [View Article][PubMed] [Google Scholar]
  11. Boonyanugomol W., Chomvarin C., Baik S. C., Song J. Y., Hahnvajanawong C., Kim K. M., Cho M. J., Lee W. K., Kang H. L. et al. (2011). Role of cagA-positive Helicobacter pylori on cell proliferation, apoptosis, and inflammation in biliary cells. Dig Dis Sci 56, 16821692. [View Article][PubMed] [Google Scholar]
  12. Brabletz T., Jung A., Dag S., Hlubek F., Kirchner T. (1999). β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155, 10331038. [View Article][PubMed] [Google Scholar]
  13. Brandt S., Kwok T., Hartig R., König W., Backert S. (2005). NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102, 93009305. [View Article][PubMed] [Google Scholar]
  14. Brenes F., Ruiz B., Correa P., Hunter F., Rhamakrishnan T., Fontham E., Shi T. Y. (1993). Helicobacter pylori causes hyperproliferation of the gastric epithelium: pre- and post-eradication indices of proliferating cell nuclear antigen. Am J Gastroenterol 88, 18701875.[PubMed] [Google Scholar]
  15. Cabral M. M., Oliveira C. A., Mendes C. M., Guerra J., Queiroz D. M., Rocha G. A., Rocha A. M., Nogueira A. M. (2007). Gastric epithelial cell proliferation and cagA status in Helicobacter pylori gastritis at different gastric sites. Scand J Gastroenterol 42, 545554. [View Article][PubMed] [Google Scholar]
  16. Cahill R. J., Xia H., Kilgallen C., Beattie S., Hamilton H., O’Morain C. (1995). Effect of eradication of Helicobacter pylori infection on gastric epithelial cell proliferation. Dig Dis Sci 40, 16271631. [View Article][PubMed] [Google Scholar]
  17. Caleman Neto A., Rasmussen L. T., de Labio R. W., de Queiroz V. F., Smith M. A., Viani G. A., Payão S. L. (2014). Gene polymorphism of interleukin 1 and 8 in chronic gastritis patients infected with Helicobacter pylori . J Venom Anim Toxins Incl Trop Dis 20, 17. [View Article][PubMed] [Google Scholar]
  18. Cargnello M., Roux P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 5083. [View Article][PubMed] [Google Scholar]
  19. Censini S., Lange C., Xiang Z., Crabtree J. E., Ghiara P., Borodovsky M., Rappuoli R., Covacci A. (1996). cag, A pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 1464814653. [View Article][PubMed] [Google Scholar]
  20. Chen Y. C., Wang Y., Li J. Y., Xu W. R., Zhang Y. L. (2006). H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade. World J Gastroenterol 12, 59725977.[PubMed] [Google Scholar]
  21. Chow T. T., Samsudin N., Talib A., Ali R. M., Mohtarrudin N., Rahman S. A., Ithnin H. (2012). β-Catenin expressions in chronic atrophic gastritis, Helicobacter pylori associated chronic gastritis and gastric cancer: an immunohistochemical study. Int. J. Pharm. Med. & Biol Sc 1, 2132. [Google Scholar]
  22. Christie P. J., Vogel J. P. (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8, 354360. [View Article][PubMed] [Google Scholar]
  23. Clements W. M., Wang J., Sarnaik A., Kim O. J., MacDonald J., Fenoglio-Preiser C., Groden J., Lowy A. M. (2002). Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62, 35033506.[PubMed] [Google Scholar]
  24. Cover T. L., Blanke S. R. (2005). Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3, 320332. [View Article][PubMed] [Google Scholar]
  25. Cover T. L., Blaser M. J. (1992). Purification and characterization of the vacuolating toxin from Helicobacter pylori . J Biol Chem 267, 1057010575.[PubMed] [Google Scholar]
  26. Cover T. L., Krishna U. S., Israel D. A., Peek R. M. Jr (2003). Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 63, 951957.[PubMed] [Google Scholar]
  27. Cover, T. L., Vaughn, S. G., Cao, P. & Blaser, M. J. (1992). Potentiation of Helicobacter pylori vacuolating toxin activity by nicotine and other weak bases. J Infect Dis166, 1073–1078.
  28. Crabtree J. E., Shallcross T. M., Heatley R. V., Wyatt J. I. (1991). Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut 32, 14731477. [View Article][PubMed] [Google Scholar]
  29. Crabtree J. E., Xiang Z., Lindley I. J., Tompkins D. S., Rappuoli R., Covacci A. (1995). Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative isogenic mutant of Helicobacter pylori . J Clin Pathol 48, 967969. [View Article][PubMed] [Google Scholar]
  30. Davidson G., Wu W., Shen J., Bilic J., Fenger U., Stannek P., Glinka A., Niehrs C. (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867872. [View Article][PubMed] [Google Scholar]
  31. De Luca A., Iaquinto G. (2004). Helicobacter pylori and gastric diseases: a dangerous association. Cancer Lett 213, 110. [View Article][PubMed] [Google Scholar]
  32. Ding S. Z., Smith M. F. Jr, Goldberg J. B. (2008). Helicobacter pylori and mitogen-activated protein kinases regulate the cell cycle, proliferation and apoptosis in gastric epithelial cells. J Gastroenterol Hepatol 23, e67e78. [View Article][PubMed] [Google Scholar]
  33. Eck M., Schmausser B., Scheller K., Toksoy A., Kraus M., Menzel T., Müller-Hermelink H. K., Gillitzer R. (2000). CXC chemokines Groα/IL-8 and IP-10/MIG in Helicobacter pylori gastritis. Clin Exp Immunol 122, 192199. [View Article][PubMed] [Google Scholar]
  34. Eftang L. L., Esbensen Y., Tannæs T. M., Bukholm I. R., Bukholm G. (2012). Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol 12, 9. [View Article][PubMed] [Google Scholar]
  35. Fan X. G., Kelleher D., Fan X. J., Xia H. X., Keeling P. W. (1996). Helicobacter pylori increases proliferation of gastric epithelial cells. Gut 38, 1922. [View Article][PubMed] [Google Scholar]
  36. Figueiredo C. A., Marques C. R., Costa R. S., da Silva H. B., Alcantara-Neves N. M. (2014). Cytokines, cytokine gene polymorphisms and Helicobacter pylori infection: friend or foe?World J Gastroenterol 20, 52355243. [View Article][PubMed] [Google Scholar]
  37. Franco A. T., Israel D. A., Washington M. K., Krishna U., Fox J. G., Rogers A. B., Neish A. S., Collier-Hyams L., Perez-Perez G. I. et al. (2005). Activation of β-catenin by carcinogenic Helicobacter pylori . Proc Natl Acad Sci U S A 102, 1064610651. [View Article][PubMed] [Google Scholar]
  38. Gnad T., Feoktistova M., Leverkus M., Lendeckel U., Naumann M. (2010). Helicobacter pylori-induced activation of beta-catenin involves low density lipoprotein receptor-related protein 6 and Dishevelled. Mol Cancer, 9, 31.[CrossRef] [Google Scholar]
  39. Green D. R., Evan G. I. (2002). A matter of life and death. Cancer Cell, 11930.[CrossRef] [Google Scholar]
  40. Hatakeyama M. (2008). SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11, 3037. [View Article][PubMed] [Google Scholar]
  41. Hayden M. S., Ghosh S. (2008). Shared principles in NF-κB signaling. Cell 132, 344362. [View Article][PubMed] [Google Scholar]
  42. He T. C., Sparks A. B., Rago C., Hermeking H., Zawel L., da Costa L. T., Morin P. J., Vogelstein B., Kinzler K. W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 15091512. [View Article][PubMed] [Google Scholar]
  43. Hellmig S., Hampe J., Folsch U. R., Schreiber S. (2005). Role of IL-10 promoter haplotypes in Helicobacter pylori associated gastric inflammation. Gut 54, 888.[CrossRef] [Google Scholar]
  44. Higashi H., Tsutsumi R., Muto S., Sugiyama T., Azuma T., Asaka M., Hatakeyama M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683686. [View Article][PubMed] [Google Scholar]
  45. Higashi H., Nakaya A., Tsutsumi R., Yokoyama K., Fujii Y., Ishikawa S., Higuchi M., Takahashi A., Kurashima Y. et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279, 1720517216. [View Article][PubMed] [Google Scholar]
  46. Hipfner D. R., Cohen S. M. (2004). Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 5, 805815.[CrossRef] [Google Scholar]
  47. Hirata Y., Maeda S., Mitsuno Y., Akanuma M., Yamaji Y., Ogura K., Yoshida H., Shiratori Y., Omata M. (2001). Helicobacter pylori activates the cyclin D1 gene through mitogen-activated protein kinase pathway in gastric cancer cells. Infect Immun 69, 39653971. [View Article][PubMed] [Google Scholar]
  48. Hoffmann E., Dittrich-Breiholz O., Holtmann H., Kracht M. (2002). Multiple control of interleukin-8 gene expression. J Leukoc Biol 72, 847855.[PubMed] [Google Scholar]
  49. Karin M., Ben-Neriah Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621663. [View Article][PubMed] [Google Scholar]
  50. Keates S., Keates A. C., Warny M., Peek R. M. Jr, Murray P. G., Kelly C. P. (1999). Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag + and cag Helicobacter pylori . J Immunol 163, 55525559.[PubMed] [Google Scholar]
  51. Keates S., Keates A. C., Katchar K., Peek R. M. Jr, Kelly C. P. (2007). Helicobacter pylori induces up-regulation of the epidermal growth factor receptor in AGS gastric epithelial cells. J Infect Dis 196, 95103. [View Article][PubMed] [Google Scholar]
  52. Kimelman D., Xu W. (2006). β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25, 74827491. [View Article][PubMed] [Google Scholar]
  53. Kolch W. (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351, 289305. [View Article][PubMed] [Google Scholar]
  54. Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. (1997). Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 17841787. [View Article][PubMed] [Google Scholar]
  55. Kuipers E. J., Thijs J. C., Festen H. P. (1995). The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment Pharmacol Ther 9 (Suppl. 2), 5969.[PubMed] [Google Scholar]
  56. Kurashima, Y., Murata-Kamiya, N., Kikuchi, K., Higashi, H., Azuma, T., Kondo, S. & Hatakeyama, M. (2008). Deregulation of β-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int J Cancer122, 823–831.
  57. Kusters J. G., Gerrits M. M., Van Strijp J. A., Vandenbroucke-Grauls C. M. (1997). Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death. Infect Immun 65, 36723679.[PubMed] [Google Scholar]
  58. Kusters, J. G., van Vliet, A. H. & Kuipers, E. J. (2006). Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev19, 449–490.
  59. Lamb A., Chen L. F. (2010). The many roads traveled by Helicobacter pylori to NFκB activation. Gut Microbes 1, 109113. [View Article][PubMed] [Google Scholar]
  60. Lamb A., Chen L. F. (2013). Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J Cell Biochem 114, 491497. [View Article][PubMed] [Google Scholar]
  61. Lavoie J. N., L’Allemain G., Brunet A., Müller R., Pouysségur J. (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 2060820616. [View Article][PubMed] [Google Scholar]
  62. Logan C. Y., Nusse R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781810. [View Article][PubMed] [Google Scholar]
  63. Lustig B., Jerchow B., Sachs M., Weiler S., Pietsch T., Karsten U., van de Wetering M., Clevers H., Schlag P. M. et al. (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22, 11841193. [View Article][PubMed] [Google Scholar]
  64. Lynch D. A., Mapstone N. P., Clarke A. M., Sobala G. M., Jackson P., Morrison L., Dixon M. F., Quirke P., Axon A. T. (1995). Cell proliferation in Helicobacter pylori associated gastritis and the effect of eradication therapy. Gut 36, 346350. [View Article][PubMed] [Google Scholar]
  65. Maeda S., Yoshida H., Ogura K., Mitsuno Y., Hirata Y., Yamaji Y., Akanuma M., Shiratori Y., Omata M. (2000). H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 119, 97108.[CrossRef] [Google Scholar]
  66. Malinin N. L., Boldin M. P., Kovalenko A. V., Wallach D. (1997). MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540544. [View Article][PubMed] [Google Scholar]
  67. Meyer-ter-Vehn T., Covacci A., Kist M., Pahl H. L. (2000). Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun . J Biol Chem 275, 1606416072. [View Article][PubMed] [Google Scholar]
  68. Mimuro H., Suzuki T., Tanaka J., Asahi M., Haas R., Sasakawa C. (2002). Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell 10, 745755. [View Article][PubMed] [Google Scholar]
  69. Moodie S. A., Wolfman A. (1994). The 3Rs of life: Ras, Raf and growth regulation. Trends Genet 10, 4448. [View Article][PubMed] [Google Scholar]
  70. Munoz, L., Camorlinga, M., Hernandez, R., Giono, S., Ramon, G., Munoz, O. & Torres, J. (2007). Immune and proliferative cellular responses to Helicobacter pylori infection in the gastric mucosa of Mexican children. Helicobacter12, 224–230.
  71. Murata-Kamiya N., Kurashima Y., Teishikata Y., Yamahashi Y., Saito Y., Higashi H., Aburatani H., Akiyama T., Peek R. M. Jr et al. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26, 46174626. [View Article][PubMed] [Google Scholar]
  72. Naito Y., Yoshikawa T. (2002). Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic Biol Med 33, 323336. [View Article][PubMed] [Google Scholar]
  73. Naumann M. (2005). Pathogenicity island-dependent effects of Helicobacter pylori on intracellular signal transduction in epithelial cells. Int J Med Microbiol 295, 335341. [View Article][PubMed] [Google Scholar]
  74. Neal J. T., Peterson T. S., Kent M. L., Guillemin K. (2013). H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech 6, 802810. [View Article][PubMed] [Google Scholar]
  75. Nemoto S., DiDonato J. A., Lin A. (1998). Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol Cell Biol 18, 73367343.[PubMed] [Google Scholar]
  76. Nguyen L. T., Uchida T., Murakami K., Fujioka T., Moriyama M. (2008). Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J Med Microbiol 57, 14451453. [View Article][PubMed] [Google Scholar]
  77. Noach L. A., Bosma N. B., Jansen J., Hoek F. J., van Deventer S. J., Tytgat G. N. (1994). Mucosal tumor necrosis factor-α, interleukin-1 β, and interleukin-8 production in patients with Helicobacter pylori infection. Scand J Gastroenterol 29, 425429. [View Article][PubMed] [Google Scholar]
  78. Nomura A., Stemmermann G. N., Chyou P. H., Perez-Perez G. I., Blaser M. J. (1994). Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med 120, 977981. [View Article][PubMed] [Google Scholar]
  79. Normanno N., De Luca A., Bianco C., Strizzi L., Mancino M., Maiello M. R., Carotenuto A., De Feo G., Caponigro F., Salomon D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 216. [View Article][PubMed] [Google Scholar]
  80. Noto J. M., Peek R. M. Jr (2012). The Helicobacter pylori cag pathogenicity island. Methods Mol Biol 921, 4150. [View Article][PubMed] [Google Scholar]
  81. Nozawa Y., Nishihara K., Peek R. M., Nakano M., Uji T., Ajioka H., Matsuura N., Miyake H. (2002). Identification of a signaling cascade for interleukin-8 production by Helicobacter pylori in human gastric epithelial cells. Biochem Pharmacol 64, 2130.[CrossRef] [Google Scholar]
  82. Oertli M., Noben M., Engler D. B., Semper R. P., Reuter S., Maxeiner J., Gerhard M., Taube C., Müller A. (2013). Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A 110, 30473052. [View Article][PubMed] [Google Scholar]
  83. Orlowski R. Z., Baldwin A. S. Jr (2002). NF-κB as a therapeutic target in cancer. Trends Mol Med 8, 385389. [View Article][PubMed] [Google Scholar]
  84. Papadakos K. S., Sougleri I. S., Mentis A. F., Hatziloukas E., Sgouras D. N. (2013). Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PLoS ONE 8, e56291. [View Article][PubMed] [Google Scholar]
  85. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K. (1991). Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325, 11271131. [View Article][PubMed] [Google Scholar]
  86. Peek R. M. Jr, Blaser M. J., Mays D. J., Forsyth M. H., Cover T. L., Song S. Y., Krishna U., Pietenpol J. A. (1999). Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle. Cancer Res 59, 61246131.[PubMed] [Google Scholar]
  87. Polk D. B., Peek R. M. Jr (2010). Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10, 403414. [View Article][PubMed] [Google Scholar]
  88. Resnitzky D., Reed S. I. (1995). Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 15, 34633469.[PubMed] [Google Scholar]
  89. Roberts P. J., Der C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 32913310. [View Article][PubMed] [Google Scholar]
  90. Robles A. I., Larcher F., Whalin R. B., Murillas R., Richie E., Gimenez-Conti I. B., Jorcano J. L., Conti C. J. (1996). Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci U S A 93, 76347638. [View Article][PubMed] [Google Scholar]
  91. Schneider S., Carra G., Sahin U., Hoy B., Rieder G., Wessler S. (2011). Complex cellular responses of Helicobacter pylori-colonized gastric adenocarcinoma cells. Infect Immun 79, 23622371.[CrossRef] [Google Scholar]
  92. Sebkova, L., Pellicanò. A., Monteleone, G., Grazioli, B., Guarnieri, G., Imeneo, M., Pallone, F. & Luzza, F. (2004). Extracellular signal-regulated protein kinase mediates interleukin 17 (IL-17)-induced IL-8 secretion in Helicobacter pylori-infected human gastric epithelial cells. Infect Immun72, 5019–5026.
  93. Sharma S. A., Tummuru M. K., Miller G. G., Blaser M. J. (1995). Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun 63, 16811687.[PubMed] [Google Scholar]
  94. Sharma S. A., Tummuru M. K., Blaser M. J., Kerr L. D. (1998). Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 160, 24012407.[PubMed] [Google Scholar]
  95. Sherr C. J. (1996). Cancer cell cycles. Science 274, 16721677. [View Article][PubMed] [Google Scholar]
  96. Shibata W., Hirata Y., Yoshida H., Otsuka M., Hoshida Y., Ogura K., Maeda S., Ohmae T., Yanai A. et al. (2005). NF-kappaB and ERK-signaling pathways contribute to the gene expression induced by cag PAI-positive-Helicobacter pylori infection. World J Gastroenterol 11, 61346143.[PubMed] [Google Scholar]
  97. Shimizu N., Inada K., Nakanishi H., Tsukamoto T., Ikehara Y., Kaminishi M., Kuramoto S., Sugiyama A., Katsuyama T., Tatematsu M. (1999). Helicobacter pylori infection enhances glandular stomach carcinogenesis in Mongolian gerbils treated with chemical carcinogens. Carcinogenesis 20, 669676. [View Article][PubMed] [Google Scholar]
  98. Shtutman M., Zhurinsky J., Simcha I., Albanese C., D’Amico M., Pestell R., Ben-Ze’ev A. (1999). The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96, 55225527. [View Article][PubMed] [Google Scholar]
  99. Smoot D. T., Wynn Z., Elliott T. B., Allen C. R., Mekasha G., Naab T., Ashktorab H. (1999). Effects of Helicobacter pylori on proliferation of gastric epithelial cells in vitro . Am J Gastroenterol 94, 15081511.[CrossRef] [Google Scholar]
  100. Sokolova, O., Bozko, P. M. & Naumann, M. (2008). Helicobacter pylori suppresses glycogen synthase kinase 3β to promote β-catenin activity. J Biol Chem283, 29367–29374.
  101. Sorelli-Lee, V., Ling, K. L., Ho, C., Yeong, L. H., Lim, G. K., Ho, B. & Wong, S. B. (2012). Persistent Helicobacter pylori specific Th17 responses in patients with past H. pylori infection are associated with elevated gastric mucosal IL-1 β. PLoS One7, e39199.
  102. Sugimoto M., Ohno T., Graham D. Y., Yamaoka Y. (2011). Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J Gastroenterol Hepatol 26, 16771684. [View Article][PubMed] [Google Scholar]
  103. Suzuki M., Mimuro H., Kiga K., Fukumatsu M., Ishijima N., Morikawa H., Nagai S., Koyasu S., Gilman R. H. et al. (2009). Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5, 2334. [View Article][PubMed] [Google Scholar]
  104. Tao R., Hu M. F., Lou J. T., Lei Y. L. (2007). Effects of H pylori infection on gap-junctional intercellular communication and proliferation of gastric epithelial cells in vitro. World J Gastroenterol 13, 54975500. [View Article][PubMed] [Google Scholar]
  105. Tetsu O., McCormick F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422426. [View Article][PubMed] [Google Scholar]
  106. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S. et al. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388, 539547. [View Article][PubMed] [Google Scholar]
  107. Tong J. H., To K. F., Ng E. K., Lau J. Y., Lee T. L., Lo K. W., Leung W. K., Tang N. L., Chan F. K. et al. (2001). Somatic β-catenin mutation in gastric carcinoma–an infrequent event that is not specific for microsatellite instability. Cancer Lett 163, 125130. [View Article][PubMed] [Google Scholar]
  108. Tsukashita S., Kushima R., Bamba M., Nakamura E., Mukaisho K., Sugihara H., Hattori T. (2003). Beta-catenin expression in intramucosal neoplastic lesions of the stomach. Comparative analysis of adenoma/dysplasia, adenocarcinoma and signet-ring cell carcinoma. Oncology 64, 251258. [View Article][PubMed] [Google Scholar]
  109. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J. (2001). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345, 784789. [View Article][PubMed] [Google Scholar]
  110. Veijola, L., Oksanen, A., Sipponen, P. & Rautelin, H. (2007). Persisting chronic gastritis and elevated Helicobacter pylori antibodies after successful eradication therapy. Helicobacter12, 605–608.
  111. Verma I. M., Stevenson J. K., Schwarz E. M., Van Antwerp D., Miyamoto S. (1995). Rel/NF-κB/I κB family: intimate tales of association and dissociation. Genes Dev 9, 27232735. [View Article][PubMed] [Google Scholar]
  112. Watanabe N., Shimada T., Ohtsuka Y., Hiraishi H., Terano A. (1997). Proinflammatory cytokines and Helicobacter pylori stimulate CC-chemokine expression in gastric epithelial cells. J Physiol Pharmacol 48, 405413.[PubMed] [Google Scholar]
  113. Woo D. K., Kim H. S., Lee H. S., Kang Y. H., Yang H. K., Kim W. H. (2001). Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines. Int J Cancer 95, 108113. [View Article][PubMed] [Google Scholar]
  114. Wroblewski L. E., Peek R. M. Jr, Wilson K. T. (2010). Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23, 713739. [View Article][PubMed] [Google Scholar]
  115. Yamaoka Y. (2008). Increasing evidence of the role of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J Infect Dev Ctries 2, 174181. [View Article][PubMed] [Google Scholar]
  116. Yamaoka Y. (2009). Helicobacter pylori typing as a tool for tracking human migration. Clin Microbiol Infect 15, 829834. [View Article][PubMed] [Google Scholar]
  117. Yamaoka Y. (2010). Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7, 629641.[PubMed] [Google Scholar]
  118. Yamaoka Y., Kita M., Kodama T., Imamura S., Ohno T., Sawai N., Ishimaru A., Imanishi J., Graham D. Y. (2002). Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation. Gastroenterology 123, 19922004. [View Article][PubMed] [Google Scholar]
  119. Yamaoka Y., Ojo O., Fujimoto S., Odenbreit S., Haas R., Gutierrez O., El-Zimaity H. M., Reddy R., Arnqvist A., Graham D. Y. (2006). Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55, 775781. [View Article][PubMed] [Google Scholar]
  120. Yang Y. J., Chuang C. C., Yang H. B., Lu C. C., Sheu B. S. (2012a). Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol 12, 38. [View Article][PubMed] [Google Scholar]
  121. Yang Z. M., Chen W. W., Wang Y. F. (2012b). Gene expression profiling in gastric mucosa from Helicobacter pylori-infected and uninfected patients undergoing chronic superficial gastritis. PLoS ONE 7, e33030. [View Article][PubMed] [Google Scholar]
  122. Zarich N., Oliva J. L., Martínez N., Jorge R., Ballester A., Gutiérrez-Eisman S., García-Vargas S., Rojas J. M. (2006). Grb2 is a negative modulator of the intrinsic Ras-GEF activity of hSos1. Mol Biol Cell 17, 35913597. [View Article][PubMed] [Google Scholar]
  123. Zeng X., Tamai K., Doble B., Li S., Huang H., Habas R., Okamura H., Woodgett J., He X. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873877. [View Article][PubMed] [Google Scholar]
  124. Zhang W., Liu H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12, 918. [View Article][PubMed] [Google Scholar]
  125. Zhang H., Xue Y. (2008). Wnt pathway is involved in advanced gastric carcinoma. Hepatogastroenterology 55, 11261130.[PubMed] [Google Scholar]
  126. Zhao D., Liu Z., Ding J., Li W., Sun Y., Yu H., Zhou Y., Zeng J., Chen C., Jia J. (2010). Helicobacter pylori CagA upregulation of CIP2A is dependent on the Src and MEK/ERK pathways. J Med Microbiol 59, 259265. [View Article][PubMed] [Google Scholar]
  127. Zheng, P. Y., Hua, J., Yeoh, K. G. & Ho, B. (2000). Association of peptic ulcer with increased expression of Lewis antigens but not cagA, iceA, and vacA in Helicobacter pylori isolates in an Asian population. Gut47, 18–22.
  128. Zhuang, Y., Shi, Y., Liu, X. F., Zhang, J. Y., Liu, T., Fan, X., Luo, J., Wu, C., Yu, S. & other authors (2010).Helicobacter pylori-infected macrophages induce Th17 cell differentiation. Immunobiology216, 200–207.

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error