1887

Abstract

Piliation is an important virulence determinant for PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between and a locus. were so-named as they are believed to be transcriptionally silent, in contrast to the locus. In this study, we demonstrate the presence of a small, specific RNA species. Through using a series of deletion mutants, we show by Northern blotting and quantitative reverse transcriptase PCR analysis (qRT-PCR), that these smaller RNA species are not derived from the primary transcript following some processing events, but rather, arose through transcription of the loci. Small transcriptome analysis, in conjunction with analysis of recombinants, identified both sense and anti-sense RNAs originating from most, but not all, of the gene copies. Focusing on the MS11 locus, we identified by site-directed mutagenesis a sense promoter located immediately upstream of copy 2, as well as an anti-sense promoter immediately downstream of copy 1. Whole transcriptome analysis also revealed the presence of specific sRNA in both gonococci and meningococci. Overall, this study reveals an added layer of complexity to the recombination scheme by demonstrating -specific transcription within genes that were previously thought to be transcriptionally silent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000061
2015-05-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1124.html?itemId=/content/journal/micro/10.1099/mic.0.000061&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. InProceedings of the Second International Conference on Intelligent Systems for Molecular Biology pp.28–36AAAI PressMenlo Park California
    [Google Scholar]
  2. Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., Ren J., Li W. W., Noble W. S.. 2009; meme SUITE: tools for motif discovery and searching. Nucleic Acids Res37:Web Server issueW202–W208 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergström S., Robbins K., Koomey J. M., Swanson J.. 1986; Piliation control mechanisms in Neisseria gonorrhoeae.. Proc Natl Acad Sci U S A83:3890–3894 [CrossRef][PubMed]
    [Google Scholar]
  4. Carrick C. S., Fyfe J. A. M., Davies J. K.. 1997; The normally silent σ54 promoters upstream of the pilE genes of both Neisseria gonorrhoeae and Neisseria meningitidis are functional when transferred to Pseudomonas aeruginosa.. Gene198:89–97 [CrossRef][PubMed]
    [Google Scholar]
  5. Carver T., Harris S. R., Berriman M., Parkhill J., McQuillan J. A.. 2012; Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics28:464–469 [CrossRef][PubMed]
    [Google Scholar]
  6. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  7. Davies J. K., Harrison P. F., Lin Y.-H., Bartley S., Khoo C. A., Seemann T., Ryan C. S., Kahler C. M., Hill S. A.. 2014; The use of high-throughput DNA sequencing in the investigation of antigenic variation: application to Neisseria species. PLoS ONE9:e86704 [CrossRef][PubMed]
    [Google Scholar]
  8. French R., Ahlquist P.. 1987; Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol61:1457–1465[PubMed]
    [Google Scholar]
  9. Fyfe J. A. M., Davies J. K.. 1998; An AT-rich tract containing an integration host factor-binding domain and two UP-like elements enhances transcription from the pilEp1 promoter of Neisseria gonorrhoeae.. J Bacteriol180:2152–2159[PubMed]
    [Google Scholar]
  10. Fyfe J. A. M., Carrick C. S., Davies J. K.. 1995; The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a σ 70 promoter during growth in vitro. J Bacteriol177:3781–3787[PubMed]
    [Google Scholar]
  11. Haas R., Meyer T. F.. 1986; The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell44:107–115 [CrossRef][PubMed]
    [Google Scholar]
  12. Haas R., Veit S., Meyer T. F.. 1992; Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol Microbiol6:197–208 [CrossRef][PubMed]
    [Google Scholar]
  13. Hagblom P., Segal E., Billyard E., So M.. 1985; Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae.. Nature315:156–158 [CrossRef][PubMed]
    [Google Scholar]
  14. Hill S. A., Davies J. K.. 2009; Pilin gene variation in Neisseria gonorrhoeae: reassessing the old paradigms. FEMS Microbiol Rev33:521–530 [CrossRef][PubMed]
    [Google Scholar]
  15. Hill S. A., Samuels D. S., Carlson J. H., Wilson J., Hogan D., Lubke L., Belland R. J.. 1997; Integration host factor is a transcriptional cofactor of pilE in Neisseria gonorrhoeae.. Mol Microbiol23:649–656 [CrossRef][PubMed]
    [Google Scholar]
  16. Katoh K., Misawa K., Kuma K., Miyata T.. 2002; mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  17. Krzywinski M., Schein J. E., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A.. 2009; Circos: an information aesthetic for comparative genomics. Genome Res19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  18. Lasa I., Villanueva M.. 2014; Overlapping transcription and bacterial RNA removal. Proc Natl Acad Sci U S A111:2868–2869 [CrossRef][PubMed]
    [Google Scholar]
  19. Laskos L., Dillard J. P., Seifert H. S., Fyfe J. A. M., Davies J. K.. 1998; The pathogenic Neisseriae contain an inactive rpoN gene and do not utilize the pilE σ54 promoter. Gene208:95–102 [CrossRef][PubMed]
    [Google Scholar]
  20. Lybecker M., Zimmermann B., Bilusic I., Tukhtubaeva N., Schroeder R.. 2014; The double-stranded transcriptome of Escherichia coli.. Proc Natl Acad Sci U S A111:3134–3139 [CrossRef][PubMed]
    [Google Scholar]
  21. Meyer T. F., Hill S. A.. 2003; Genetic variation in the Pathogenic Neisseria species. In Antigenic Variation pp.142–164 Edited by Craig A., Scherf A.. San Diego: Academic Press; [CrossRef]
    [Google Scholar]
  22. Meyer T. F., Billyard E., Haas R., Storzbach S., So M.. 1984; Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc Natl Acad Sci U S A81:6110–6114 [CrossRef][PubMed]
    [Google Scholar]
  23. Remmele C. W., Xian Y., Albrecht M., Faulstich M., Fraunholz M., Heinrichs E., Dittrich M. T., Müller T., Reinhardt R., Rudel T.. 2014; Transcriptional landscape and essential genes of Neisseria gonorrhoeae.. Nucleic Acids Res42:10579–10595 [CrossRef][PubMed]
    [Google Scholar]
  24. Rumble S. M., Lacroute P., Dalca A. V., Fiume M., Sidow A., Brudno M.. 2009; SHRiMP: accurate mapping of short color-space reads. PLOS Comput Biol5:e1000386 [CrossRef][PubMed]
    [Google Scholar]
  25. Solovyev V., Salamov A.. 2011; Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies pp.61–78 Edited by Li R. W.. Hauppauge, NY: Nova Science Publishers;
    [Google Scholar]
  26. Sorek R., Cossart P.. 2010; Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet11:9–16 [CrossRef][PubMed]
    [Google Scholar]
  27. Swanson J.. 1982; Colony opacity and protein II compositions of gonococci. Infect Immun37:359–368[PubMed]
    [Google Scholar]
  28. Wachter J., Hill S. A.. 2015; Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae. FEMS Microbiol Letts362:1–7
    [Google Scholar]
  29. Wade J. T., Grainger D. C.. 2014; Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol12:647–653 [CrossRef][PubMed]
    [Google Scholar]
  30. Wagner G. P., Kin K., Lynch V. J.. 2012; Measurement of mRNA abundance using RNA-seq data RPKM measure is inconsistent among samples. Theor Biosci131:281–285
    [Google Scholar]
  31. Wainwright L. A., Pritchard K. H., Seifert H. S.. 1994; A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol13:75–87 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000061
Loading
/content/journal/micro/10.1099/mic.0.000061
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error