1887

Abstract

RcsC is a hybrid histidine kinase that forms part of a phospho-relay signal transduction pathway with RcsD and RcsB. Besides the typical domains of a sensor kinase, i.e. the periplasmic (P), linker (L), dimerization and H-containing (A), and ATP-binding (B) domains, RcsC possesses a receiver domain (D) at the carboxy-terminal domain. To study the role played by each of the RcsC domains, four plasmids containing several of these domains were constructed (PLAB, LAB, AB and ABD) and transformed into K-12 strain BW25113. Different amounts of biofilm were produced, depending on the RcsC domains expressed: the plasmid expressing the ABD subdomains produced the highest amount of biofilm. This phenotype was also observed when the plasmids were transformed in a Δ strain. Biofilm formation was abolished in the and backgrounds. The results indicate the existence of a novel signalling pathway that depends on RcsC, yet independent of RcsD and RcsB, that activates the operon and, as a consequence, biofilm formation. This signalling pathway involves the secondary metabolite acetyl phosphate and the response regulator OmpR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000050
2015-04-01
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/903.html?itemId=/content/journal/micro/10.1099/mic.0.000050&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.(2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 0008. [View Article][PubMed] [Google Scholar]
  2. Brill J. A., Quinlan-Walshe C., Gottesman S.(1988). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 170, 25992611.[PubMed] [Google Scholar]
  3. Brzostek K., Skorek K., Raczkowska A.(2012). OmpR, a central integrator of several cellular responses in Yersinia enterocolitica. Adv Exp Med Biol 954, 325334. [View Article][PubMed] [Google Scholar]
  4. Capra E. J., Perchuk B. S., Ashenberg O., Seid C. A., Snow H. R., Skerker J. M., Laub M. T.(2012). Spatial tethering of kinases to their substrates relaxes evolutionary constraints on specificity. Mol Microbiol 86, 13931403. [View Article][PubMed] [Google Scholar]
  5. Cerca N., Jefferson K. K.(2008). Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 283, 3641. [View Article][PubMed] [Google Scholar]
  6. Chen M. H., Takeda S., Yamada H., Ishii Y., Yamashino T., Mizuno T.(2001). Characterization of the RcsC→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci Biotechnol Biochem 65, 23642367. [View Article][PubMed] [Google Scholar]
  7. Datsenko K. A., Wanner B. L.(2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 66406645. [View Article][PubMed] [Google Scholar]
  8. De la Cruz M. A., Merino E., Oropeza R., Téllez J., Calva E.(2009). The DNA static curvature has a role in the regulation of the ompS1 porin gene in Salmonella enterica serovar Typhi. Microbiology 155, 21272136. [View Article][PubMed] [Google Scholar]
  9. Dorel C., Lejeune P., Rodrigue A.(2006). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities?Res Microbiol 157, 306314. [View Article][PubMed] [Google Scholar]
  10. El-Kazzaz W., Morita T., Tagami H., Inada T., Aiba H.(2004). Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli. Mol Microbiol 51, 11171128. [View Article][PubMed] [Google Scholar]
  11. Ferrières L., Clarke D. J.(2003). The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50, 16651682. [View Article][PubMed] [Google Scholar]
  12. Figueroa-Bossi N., Schwartz A., Guillemardet B., D’Heygère F., Bossi L., Boudvillain M.(2014). RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28, 12391251. [View Article][PubMed] [Google Scholar]
  13. Francez-Charlot A., Castanié-Cornet M. P., Gutierrez C., Cam K.(2005). Osmotic regulation of the Escherichia coli bdm (biofilm-dependent modulation) gene by the RcsCDB His-Asp phosphorelay. J Bacteriol 187, 38733877. [View Article][PubMed] [Google Scholar]
  14. Fredericks C. E., Shibata S., Aizawa S., Reimann S. A., Wolfe A. J.(2006). Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61, 734747. [View Article][PubMed] [Google Scholar]
  15. Goller C., Wang X., Itoh Y., Romeo T.(2006). The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. J Bacteriol 188, 80228032. [View Article][PubMed] [Google Scholar]
  16. Gottesman S., Trisler P., Torres-Cabassa A.(1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162, 11111119.[PubMed] [Google Scholar]
  17. Hagiwara D., Sugiura M., Oshima T., Mori H., Aiba H., Yamashino T., Mizuno T.(2003). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185, 57355746. [View Article][PubMed] [Google Scholar]
  18. Harlocker S. L., Bergstrom L., Inouye M.(1995). Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 270, 2684926856. [View Article][PubMed] [Google Scholar]
  19. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J.(1998). Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J Bacteriol 180, 45384546.[PubMed] [Google Scholar]
  20. Huang Y. H., Ferrières L., Clarke D. J.(2006). The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157, 206212. [View Article][PubMed] [Google Scholar]
  21. Huang Y. H., Ferrières L., Clarke D. J.(2009). Comparative functional analysis of the RcsC sensor kinase from different Enterobacteriaceae. FEMS Microbiol Lett 293, 248254. [View Article][PubMed] [Google Scholar]
  22. Kuhn M. L., Zemaitaitis B., Hu L. I., Sahu A., Sorensen D., Minasov G., Lima B. P., Scholle M., Mrksich M. et al.(2014). Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS ONE 9, e94816. [View Article][PubMed] [Google Scholar]
  23. Kumari S., Beatty C. M., Browning D. F., Busby S. J., Simel E. J., Hovel-Miner G., Wolfe A. J.(2000). Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182, 41734179. [View Article][PubMed] [Google Scholar]
  24. Laubacher M. E., Ades S. E.(2008). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190, 20652074. [View Article][PubMed] [Google Scholar]
  25. Majdalani N., Gottesman S.(2005). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59, 379405. [View Article][PubMed] [Google Scholar]
  26. Martínez-Laguna Y., Calva E., Puente J. L.(1999). Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 33, 153166. [View Article][PubMed] [Google Scholar]
  27. Matsubara M., Mizuno T.(1999). EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci Biotechnol Biochem 63, 408414. [View Article][PubMed] [Google Scholar]
  28. Mayer M. P.(1995). A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163, 4146. [View Article][PubMed] [Google Scholar]
  29. McCleary W. R., Stock J. B.(1994). Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269, 3156731572.[PubMed] [Google Scholar]
  30. Mizuno T.(1997). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4, 161168. [View Article][PubMed] [Google Scholar]
  31. Niba E. T., Naka Y., Nagase M., Mori H., Kitakawa M.(2007). A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14, 237246. [View Article][PubMed] [Google Scholar]
  32. Oropeza R., Calva E.(2009). The cysteine 354 and 277 residues of Salmonella enterica serovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. FEMS Microbiol Lett 292, 282290. [View Article][PubMed] [Google Scholar]
  33. Oropeza R., Sampieri C. L., Puente J. L., Calva E.(1999). Negative and positive regulation of the non-osmoregulated ompS1 porin gene in Salmonella typhi: a novel regulatory mechanism that involves OmpR. Mol Microbiol 32, 243252. [View Article][PubMed] [Google Scholar]
  34. Prüss B. M.(1998). Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch Microbiol 170, 141146. [View Article][PubMed] [Google Scholar]
  35. Rogov V. V., Rogova N. Y., Bernhard F., Koglin A., Löhr F., Dötsch V.(2006). A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. J Mol Biol 364, 6879. [View Article][PubMed] [Google Scholar]
  36. Salscheider S. L., Jahn A., Schnetz K.(2014). Transcriptional regulation by BglJ–RcsB, a pleiotropic heteromeric activator in Escherichia coli. Nucleic Acids Res 42, 29993008. [View Article][PubMed] [Google Scholar]
  37. Samanta P., Clark E. R., Knutson K., Horne S. M., Prüß B. M.(2013). OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol 13, 182. [View Article][PubMed] [Google Scholar]
  38. Shin S., Park C.(1995). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177, 46964702.[PubMed] [Google Scholar]
  39. Stepanović S., Vuković D., Dakić I., Savić B., Švabić-Vlahović M.(2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40, 175179. [View Article][PubMed] [Google Scholar]
  40. Stout V., Gottesman S.(1990). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659669.[PubMed] [Google Scholar]
  41. Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T.(2001). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40, 440450. [View Article][PubMed] [Google Scholar]
  42. Tomenius H., Pernestig A. K., Méndez-Catalá C. F., Georgellis D., Normark S., Melefors O.(2005). Genetic and functional characterization of the Escherichia coli BarA–UvrY two-component system: point mutations in the HAMP linker of the BarA sensor give a dominant-negative phenotype. J Bacteriol 187, 73177324. [View Article][PubMed] [Google Scholar]
  43. Torres-Cabassa A. S., Gottesman S.(1987). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169, 981989.[PubMed] [Google Scholar]
  44. Van Houdt R., Michiels C. W.(2005). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156, 626633. [View Article][PubMed] [Google Scholar]
  45. Villarreal J. M., Becerra-Lobato N., Rebollar-Flores J. E., Medina-Aparicio L., Carbajal-Gómez E., Zavala-García M. L., Vázquez A., Gutiérrez-Ríos R. M., Olvera L. et al.(2014). The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 92, 10051024. [View Article][PubMed] [Google Scholar]
  46. Wang X., Preston J. F. III, Romeo T.(2004). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186, 27242734. [View Article][PubMed] [Google Scholar]
  47. Wang X., Dubey A. K., Suzuki K., Baker C. S., Babitzke P., Romeo T.(2005). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56, 16481663. [View Article][PubMed] [Google Scholar]
  48. Wolfe A. J.(2010). Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr Opin Microbiol 13, 204209. [View Article][PubMed] [Google Scholar]
  49. Wolfe A. J., Chang D. E., Walker J. D., Seitz-Partridge J. E., Vidaurri M. D., Lange C. F., Prüss B. M., Henk M. C., Larkin J. C., Conway T.(2003). Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48, 977988. [View Article][PubMed] [Google Scholar]
  50. Wolfe A. J., Parikh N., Lima B. P., Zemaitaitis B.(2008). Signal integration by the two-component signal transduction response regulator CpxR. J Bacteriol 190, 23142322. [View Article][PubMed] [Google Scholar]
  51. Zhou L., Lei X. H., Bochner B. R., Wanner B. L.(2003). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185, 49564972. [View Article][PubMed] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000050
Loading
/content/journal/micro/10.1099/mic.0.000050
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error