1887

Abstract

RcsC is a hybrid histidine kinase that forms part of a phospho-relay signal transduction pathway with RcsD and RcsB. Besides the typical domains of a sensor kinase, i.e. the periplasmic (P), linker (L), dimerization and H-containing (A), and ATP-binding (B) domains, RcsC possesses a receiver domain (D) at the carboxy-terminal domain. To study the role played by each of the RcsC domains, four plasmids containing several of these domains were constructed (PLAB, LAB, AB and ABD) and transformed into K-12 strain BW25113. Different amounts of biofilm were produced, depending on the RcsC domains expressed: the plasmid expressing the ABD subdomains produced the highest amount of biofilm. This phenotype was also observed when the plasmids were transformed in a Δ strain. Biofilm formation was abolished in the and backgrounds. The results indicate the existence of a novel signalling pathway that depends on RcsC, yet independent of RcsD and RcsB, that activates the operon and, as a consequence, biofilm formation. This signalling pathway involves the secondary metabolite acetyl phosphate and the response regulator OmpR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000050
2015-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/903.html?itemId=/content/journal/micro/10.1099/mic.0.000050&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006; ). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brill J. A., Quinlan-Walshe C., Gottesman S.. ( 1988; ). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. . J Bacteriol 170:, 2599–2611.[PubMed]
    [Google Scholar]
  3. Brzostek K., Skorek K., Raczkowska A.. ( 2012; ). OmpR, a central integrator of several cellular responses in Yersinia enterocolitica. . Adv Exp Med Biol 954:, 325–334. [CrossRef] [PubMed]
    [Google Scholar]
  4. Capra E. J., Perchuk B. S., Ashenberg O., Seid C. A., Snow H. R., Skerker J. M., Laub M. T.. ( 2012; ). Spatial tethering of kinases to their substrates relaxes evolutionary constraints on specificity. . Mol Microbiol 86:, 1393–1403. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cerca N., Jefferson K. K.. ( 2008; ). Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. . FEMS Microbiol Lett 283:, 36–41. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen M. H., Takeda S., Yamada H., Ishii Y., Yamashino T., Mizuno T.. ( 2001; ). Characterization of the RcsC→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. . Biosci Biotechnol Biochem 65:, 2364–2367. [CrossRef] [PubMed]
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L.. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  8. De la Cruz M. A., Merino E., Oropeza R., Téllez J., Calva E.. ( 2009; ). The DNA static curvature has a role in the regulation of the ompS1 porin gene in Salmonella enterica serovar Typhi. . Microbiology 155:, 2127–2136. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dorel C., Lejeune P., Rodrigue A.. ( 2006; ). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities?. Res Microbiol 157:, 306–314. [CrossRef] [PubMed]
    [Google Scholar]
  10. El-Kazzaz W., Morita T., Tagami H., Inada T., Aiba H.. ( 2004; ). Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli. . Mol Microbiol 51:, 1117–1128. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ferrières L., Clarke D. J.. ( 2003; ). The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. . Mol Microbiol 50:, 1665–1682. [CrossRef] [PubMed]
    [Google Scholar]
  12. Figueroa-Bossi N., Schwartz A., Guillemardet B., D’Heygère F., Bossi L., Boudvillain M.. ( 2014; ). RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. . Genes Dev 28:, 1239–1251. [CrossRef] [PubMed]
    [Google Scholar]
  13. Francez-Charlot A., Castanié-Cornet M. P., Gutierrez C., Cam K.. ( 2005; ). Osmotic regulation of the Escherichia coli bdm (biofilm-dependent modulation) gene by the RcsCDB His-Asp phosphorelay. . J Bacteriol 187:, 3873–3877. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fredericks C. E., Shibata S., Aizawa S., Reimann S. A., Wolfe A. J.. ( 2006; ). Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. . Mol Microbiol 61:, 734–747. [CrossRef] [PubMed]
    [Google Scholar]
  15. Goller C., Wang X., Itoh Y., Romeo T.. ( 2006; ). The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. . J Bacteriol 188:, 8022–8032. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gottesman S., Trisler P., Torres-Cabassa A.. ( 1985; ). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. . J Bacteriol 162:, 1111–1119.[PubMed]
    [Google Scholar]
  17. Hagiwara D., Sugiura M., Oshima T., Mori H., Aiba H., Yamashino T., Mizuno T.. ( 2003; ). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. . J Bacteriol 185:, 5735–5746. [CrossRef] [PubMed]
    [Google Scholar]
  18. Harlocker S. L., Bergstrom L., Inouye M.. ( 1995; ). Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. . J Biol Chem 270:, 26849–26856. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J.. ( 1998; ). Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. . J Bacteriol 180:, 4538–4546.[PubMed]
    [Google Scholar]
  20. Huang Y. H., Ferrières L., Clarke D. J.. ( 2006; ). The role of the Rcs phosphorelay in Enterobacteriaceae. . Res Microbiol 157:, 206–212. [CrossRef] [PubMed]
    [Google Scholar]
  21. Huang Y. H., Ferrières L., Clarke D. J.. ( 2009; ). Comparative functional analysis of the RcsC sensor kinase from different Enterobacteriaceae. . FEMS Microbiol Lett 293:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kuhn M. L., Zemaitaitis B., Hu L. I., Sahu A., Sorensen D., Minasov G., Lima B. P., Scholle M., Mrksich M. et al. ( 2014; ). Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. . PLoS ONE 9:, e94816. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kumari S., Beatty C. M., Browning D. F., Busby S. J., Simel E. J., Hovel-Miner G., Wolfe A. J.. ( 2000; ). Regulation of acetyl coenzyme A synthetase in Escherichia coli. . J Bacteriol 182:, 4173–4179. [CrossRef] [PubMed]
    [Google Scholar]
  24. Laubacher M. E., Ades S. E.. ( 2008; ). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. . J Bacteriol 190:, 2065–2074. [CrossRef] [PubMed]
    [Google Scholar]
  25. Majdalani N., Gottesman S.. ( 2005; ). The Rcs phosphorelay: a complex signal transduction system. . Annu Rev Microbiol 59:, 379–405. [CrossRef] [PubMed]
    [Google Scholar]
  26. Martínez-Laguna Y., Calva E., Puente J. L.. ( 1999; ). Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. . Mol Microbiol 33:, 153–166. [CrossRef] [PubMed]
    [Google Scholar]
  27. Matsubara M., Mizuno T.. ( 1999; ). EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. . Biosci Biotechnol Biochem 63:, 408–414. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mayer M. P.. ( 1995; ). A new set of useful cloning and expression vectors derived from pBlueScript. . Gene 163:, 41–46. [CrossRef] [PubMed]
    [Google Scholar]
  29. McCleary W. R., Stock J. B.. ( 1994; ). Acetyl phosphate and the activation of two-component response regulators. . J Biol Chem 269:, 31567–31572.[PubMed]
    [Google Scholar]
  30. Mizuno T.. ( 1997; ). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. . DNA Res 4:, 161–168. [CrossRef] [PubMed]
    [Google Scholar]
  31. Niba E. T., Naka Y., Nagase M., Mori H., Kitakawa M.. ( 2007; ). A genome-wide approach to identify the genes involved in biofilm formation in E. coli. . DNA Res 14:, 237–246. [CrossRef] [PubMed]
    [Google Scholar]
  32. Oropeza R., Calva E.. ( 2009; ). The cysteine 354 and 277 residues of Salmonella enterica serovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. . FEMS Microbiol Lett 292:, 282–290. [CrossRef] [PubMed]
    [Google Scholar]
  33. Oropeza R., Sampieri C. L., Puente J. L., Calva E.. ( 1999; ). Negative and positive regulation of the non-osmoregulated ompS1 porin gene in Salmonella typhi: a novel regulatory mechanism that involves OmpR. . Mol Microbiol 32:, 243–252. [CrossRef] [PubMed]
    [Google Scholar]
  34. Prüss B. M.. ( 1998; ). Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. . Arch Microbiol 170:, 141–146. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rogov V. V., Rogova N. Y., Bernhard F., Koglin A., Löhr F., Dötsch V.. ( 2006; ). A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. . J Mol Biol 364:, 68–79. [CrossRef] [PubMed]
    [Google Scholar]
  36. Salscheider S. L., Jahn A., Schnetz K.. ( 2014; ). Transcriptional regulation by BglJ–RcsB, a pleiotropic heteromeric activator in Escherichia coli. . Nucleic Acids Res 42:, 2999–3008. [CrossRef] [PubMed]
    [Google Scholar]
  37. Samanta P., Clark E. R., Knutson K., Horne S. M., Prüß B. M.. ( 2013; ). OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. . BMC Microbiol 13:, 182. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shin S., Park C.. ( 1995; ). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. . J Bacteriol 177:, 4696–4702.[PubMed]
    [Google Scholar]
  39. Stepanović S., Vuković D., Dakić I., Savić B., Švabić-Vlahović M.. ( 2000; ). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. . J Microbiol Methods 40:, 175–179. [CrossRef] [PubMed]
    [Google Scholar]
  40. Stout V., Gottesman S.. ( 1990; ). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. . J Bacteriol 172:, 659–669.[PubMed]
    [Google Scholar]
  41. Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T.. ( 2001; ). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. . Mol Microbiol 40:, 440–450. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tomenius H., Pernestig A. K., Méndez-Catalá C. F., Georgellis D., Normark S., Melefors O.. ( 2005; ). Genetic and functional characterization of the Escherichia coli BarA–UvrY two-component system: point mutations in the HAMP linker of the BarA sensor give a dominant-negative phenotype. . J Bacteriol 187:, 7317–7324. [CrossRef] [PubMed]
    [Google Scholar]
  43. Torres-Cabassa A. S., Gottesman S.. ( 1987; ). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. . J Bacteriol 169:, 981–989.[PubMed]
    [Google Scholar]
  44. Van Houdt R., Michiels C. W.. ( 2005; ). Role of bacterial cell surface structures in Escherichia coli biofilm formation. . Res Microbiol 156:, 626–633. [CrossRef] [PubMed]
    [Google Scholar]
  45. Villarreal J. M., Becerra-Lobato N., Rebollar-Flores J. E., Medina-Aparicio L., Carbajal-Gómez E., Zavala-García M. L., Vázquez A., Gutiérrez-Ríos R. M., Olvera L. et al. ( 2014; ). The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. . Mol Microbiol 92:, 1005–1024. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wang X., Preston J. F. III, Romeo T.. ( 2004; ). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. . J Bacteriol 186:, 2724–2734. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wang X., Dubey A. K., Suzuki K., Baker C. S., Babitzke P., Romeo T.. ( 2005; ). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. . Mol Microbiol 56:, 1648–1663. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wolfe A. J.. ( 2010; ). Physiologically relevant small phosphodonors link metabolism to signal transduction. . Curr Opin Microbiol 13:, 204–209. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wolfe A. J., Chang D. E., Walker J. D., Seitz-Partridge J. E., Vidaurri M. D., Lange C. F., Prüss B. M., Henk M. C., Larkin J. C., Conway T.. ( 2003; ). Evidence that acetyl phosphate functions as a global signal during biofilm development. . Mol Microbiol 48:, 977–988. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wolfe A. J., Parikh N., Lima B. P., Zemaitaitis B.. ( 2008; ). Signal integration by the two-component signal transduction response regulator CpxR. . J Bacteriol 190:, 2314–2322. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zhou L., Lei X. H., Bochner B. R., Wanner B. L.. ( 2003; ). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. . J Bacteriol 185:, 4956–4972. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000050
Loading
/content/journal/micro/10.1099/mic.0.000050
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error