1887

Abstract

During a succession of phocine morbillivirus outbreaks spanning the past 25 years, was identified as a frequent secondary invader and cause of death. The goal of this study was to evaluate genetic diversity and the molecular basis for host specificity among seal isolates from these outbreaks. MLST and II ribotyping of 54 isolates from Scottish, English or Danish coasts of the Atlantic or North Sea revealed a single, host-restricted genotype. A single, novel genotype, unique from that of the Atlantic and North Sea isolates, was found in isolates from an outbreak in the Caspian Sea. Phylogenetic analysis based either on MLST sequence, ribotype patterns or genome-wide SNPs consistently placed both seal-specific genotypes within the same major clade but indicates a distinct evolutionary history for each. An additional isolate from the intestinal tract of a seal on the south-west coast of England has a genotype otherwise found in rabbit, guinea pig and pig isolates. To investigate the molecular basis for host specificity, DNA and predicted protein sequences of virulence genes that mediate host interactions were used in comparisons between a North Sea isolate, a Caspian Sea isolate and each of their closest relatives as inferred from genome-wide SNP analysis. Despite their phylogenetic divergence, fewer nucleotide and amino acid substitutions were found in comparisons of the two seal isolates than in comparisons with closely related strains. These data indicate isolates of associated with respiratory disease in seals comprise unique, host-adapted and highly clonal populations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000035
2015-03-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/580.html?itemId=/content/journal/micro/10.1099/mic.0.000035&mimeType=html&fmt=ahah

References

  1. Baker J. R., Ross H. M.. ( 1992;). The role of bacteria in phocine distemper. . Sci Total Environ 115:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  2. Beier D., Gross R.. ( 2008;). The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. . Adv Exp Med Biol 631:, 149–160. [CrossRef][PubMed]
    [Google Scholar]
  3. Binns S. H., Speakman A. J., Dawson S., Bennett M., Gaskell R. M., Hart C. A.. ( 1998;). The use of pulsed-field gel electrophoresis to examine the epidemiology of Bordetella bronchiseptica isolated from cats and other species. . Epidemiol Infect 120:, 201–208. [CrossRef][PubMed]
    [Google Scholar]
  4. Bouchez V., Brun D., Dore G., Njamkepo E., Guiso N.. ( 2011;). Bordetella parapertussis isolates not expressing pertactin circulating in France. . Clin Microbiol Infect 17:, 675–682. [CrossRef][PubMed]
    [Google Scholar]
  5. Boursaux-Eude C., Guiso N.. ( 2000;). Polymorphism of repeated regions of pertactin in Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica. . Infect Immun 68:, 4815–4817. [CrossRef][PubMed]
    [Google Scholar]
  6. Buboltz A. M., Nicholson T. L., Parette M. R., Hester S. E., Parkhill J., Harvill E. T.. ( 2008;). Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica. . J Bacteriol 190:, 5502–5511. [CrossRef][PubMed]
    [Google Scholar]
  7. Buboltz A. M., Nicholson T. L., Weyrich L. S., Harvill E. T.. ( 2009;). Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. . Infect Immun 77:, 3969–3977. [CrossRef][PubMed]
    [Google Scholar]
  8. Cotter P. A., Miller J. F.. ( 1997;). A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. . Mol Microbiol 24:, 671–685. [CrossRef][PubMed]
    [Google Scholar]
  9. Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., Mooi F. R.. ( 2005;). Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. . PLoS Pathog 1:, e45. [CrossRef][PubMed]
    [Google Scholar]
  10. Felder C. B., Graul R. C., Lee A. Y., Merkle H. P., Sadee W.. ( 1999;). The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. . AAPS PharmSci 1:, 7–26. [CrossRef][PubMed]
    [Google Scholar]
  11. Frankel G., Candy D. C., Everest P., Dougan G.. ( 1994;). Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. . Infect Immun 62:, 1835–1842.[PubMed]
    [Google Scholar]
  12. Fuchslocher B., Millar L. L., Cotter P. A.. ( 2003;). Comparison of bipA alleles within and across Bordetella species. . Infect Immun 71:, 3043–3052. [CrossRef][PubMed]
    [Google Scholar]
  13. Goodnow R. A.. ( 1980;). Biology of Bordetella bronchiseptica. . Microbiol Rev 44:, 722–738.[PubMed]
    [Google Scholar]
  14. Gueirard P., Weber C., Le Coustumier A., Guiso N.. ( 1995;). Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. . J Clin Microbiol 33:, 2002–2006.[PubMed]
    [Google Scholar]
  15. Heje N. I., Henriksen P., Aalbaek B.. ( 1991;). The seal death in Danish waters 1988. 1. Pathological and bacteriological studies. . Acta Vet Scand 32:, 205–210.[PubMed]
    [Google Scholar]
  16. Hoskins J. D., Williams J., Roy A. F., Peters J. C., McDonough P.. ( 1998;). Isolation and characterization of Bordetella bronchiseptica from cats in southern Louisiana. . Vet Immunol Immunopathol 65:, 173–176. [CrossRef][PubMed]
    [Google Scholar]
  17. Inatsuka C. S., Julio S. M., Cotter P. A.. ( 2005;). Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. . Proc Natl Acad Sci U S A 102:, 18578–18583. [CrossRef][PubMed]
    [Google Scholar]
  18. Jolley K. A., Maiden M. C.. ( 2010;). BIGSdb: scalable analysis of bacterial genome variation at the population level. . BMC Bioinformatics 11:, 595. [CrossRef][PubMed]
    [Google Scholar]
  19. Keil D. J., Fenwick B.. ( 1999;). Evaluation of canine Bordetella bronchiseptica isolates using randomly amplified polymorphic DNA fingerprinting and ribotyping. . Vet Microbiol 66:, 41–51. [CrossRef][PubMed]
    [Google Scholar]
  20. Khattak M. N., Matthews R. C.. ( 1993;). Genetic relatedness of Bordetella species as determined by macrorestriction digests resolved by pulsed-field gel electrophoresis. . Int J Syst Bacteriol 43:, 659–664. [CrossRef][PubMed]
    [Google Scholar]
  21. Kuiken T., Kennedy S., Barrett T., Van de Bildt M. W., Borgsteede F. H., Brew S. D., Codd G. A., Duck C., Deaville R.. & other authors ( 2006;). The 2000 canine distemper epidemic in Caspian seals (Phoca caspica): pathology and analysis of contributory factors. . Vet Pathol 43:, 321–338. [CrossRef][PubMed]
    [Google Scholar]
  22. Leong J. M., Fournier R. S., Isberg R. R.. ( 1990;). Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein. . EMBO J 9:, 1979–1989.[PubMed]
    [Google Scholar]
  23. Li L. J., Dougan G., Novotny P., Charles I. G.. ( 1991;). P.70 pertactin, an outer-membrane protein from Bordetella parapertussis: cloning, nucleotide sequence and surface expression in Escherichia coli. . Mol Microbiol 5:, 409–417. [CrossRef][PubMed]
    [Google Scholar]
  24. Mäkinen J., Mertsola J., Soini H., Arvilommi H., Viljanen M. K., Guiso N., He Q.. ( 2003;). PFGE and pertactin gene sequencing suggest limited genetic variability within the Finnish Bordetella parapertussis population. . J Med Microbiol 52:, 1059–1063. [CrossRef][PubMed]
    [Google Scholar]
  25. Mattoo S., Cherry J. D.. ( 2005;). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. . Clin Microbiol Rev 18:, 326–382. [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J. R., Delcher A. L., Koren S., Venter E., Walenz B. P., Brownley A., Johnson J., Li K., Mobarry C., Sutton G.. ( 2008;). Aggressive assembly of pyrosequencing reads with mates. . Bioinformatics 24:, 2818–2824. [CrossRef][PubMed]
    [Google Scholar]
  27. Munro R., Ross H., Cornwell C., Gilmour J.. ( 1992;). Disease conditions affecting common seals (Phoca vitulina) around the Scottish mainland, September–November 1988. . Sci Total Environ 115:, 67–82. [CrossRef][PubMed]
    [Google Scholar]
  28. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K.. ( 1987;). Clonal diversity and host distribution in Bordetella bronchiseptica. . J Bacteriol 169:, 2793–2803.[PubMed]
    [Google Scholar]
  29. Ning Z., Cox A. J., Mullikin J. C.. ( 2001;). SSAHA: a fast search method for large DNA databases. . Genome Res 11:, 1725–1729. [CrossRef][PubMed]
    [Google Scholar]
  30. Okada K., Ogura Y., Hayashi T., Abe A., Kuwae A., Horiguchi Y., Abe H.. ( 2014;). Complete genome sequence of Bordetella bronchiseptica S798, an isolate from a pig with atrophic rhinitis. . Genome Announc 2:, e00436-14. [CrossRef][PubMed]
    [Google Scholar]
  31. Park J., Zhang Y., Buboltz A. M., Zhang X., Schuster S. C., Ahuja U., Liu M., Miller J. F., Sebaihia M.. & other authors ( 2012;). Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. . BMC Genomics 13:, 545. [CrossRef][PubMed]
    [Google Scholar]
  32. Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., Holden M. T., Churcher C. M., Bentley S. D.. & other authors ( 2003;). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. . Nat Genet 35:, 32–40. [CrossRef][PubMed]
    [Google Scholar]
  33. Quinn P., Markey B., Leonard F., FitzPatrick E., Fanning S., Hartigan P.. ( 2011;). Bordetella species. . In Veterinary Microbiology and Microbial Disease, pp. 325–329. Chichester:: Wiley-Blackwell;.
    [Google Scholar]
  34. Rath B. A., Register K. B., Wall J., Sokol D. M., Van Dyke R. B.. ( 2008;). Persistent Bordetella bronchiseptica pneumonia in an immunocompetent infant and genetic comparison of clinical isolates with kennel cough vaccine strains. . Clin Infect Dis 46:, 905–908. [CrossRef][PubMed]
    [Google Scholar]
  35. Register K. B.. ( 2001;). Novel genetic and phenotypic heterogeneity in Bordetella bronchiseptica pertactin. . Infect Immun 69:, 1917–1921. [CrossRef][PubMed]
    [Google Scholar]
  36. Register K. B.. ( 2004;). Comparative sequence analysis of Bordetella bronchiseptica pertactin gene (prn) repeat region variants in swine vaccines and field isolates. . Vaccine 23:, 48–57. [CrossRef][PubMed]
    [Google Scholar]
  37. Register K. B., DeJong K. D.. ( 2006;). Analytical verification of a multiplex PCR for identification of Bordetella bronchiseptica and Pasteurella multocida from swine. . Vet Microbiol 117:, 201–210. [CrossRef][PubMed]
    [Google Scholar]
  38. Register K. B., Magyar T.. ( 1999;). Optimized ribotyping protocol applied to Hungarian Bordetella bronchiseptica isolates: identification of two novel ribotypes. . Vet Microbiol 69:, 277–285. [CrossRef][PubMed]
    [Google Scholar]
  39. Register K. B., Boisvert A., Ackermann M. R.. ( 1997;). Use of ribotyping to distinguish Bordetella bronchiseptica isolates. . Int J Syst Bacteriol 47:, 678–683. [CrossRef][PubMed]
    [Google Scholar]
  40. Register K. B., Sacco R. E., Foster G.. ( 2000;). Ribotyping and restriction endonuclease analysis reveal a novel clone of Bordetella bronchiseptica in seals. . J Vet Diagn Invest 12:, 535–540. [CrossRef][PubMed]
    [Google Scholar]
  41. Register K. B., Sukumar N., Palavecino E. L., Rubin B. K., Deora R.. ( 2012;). Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat. . Zoonoses Public Health 59:, 246–250. [CrossRef][PubMed]
    [Google Scholar]
  42. Rijks J. M., Read F. L., van de Bildt M. W., van Bolhuis H. G., Martina B. E., Wagenaar J. A., van der Meulen K., Osterhaus A. D., Kuiken T.. ( 2008;). Quantitative analysis of the 2002 phocine distemper epidemic in the Netherlands. . Vet Pathol 45:, 516–530. [CrossRef][PubMed]
    [Google Scholar]
  43. Shina A., Hart C. A., Stenton M. D., Dawson S., McCracken C. M., Binns S. H., Gaskell R. M., Winstanley C.. ( 2002;). Distribution of fim3 and flaA TTGE sequence types amongst isolates of Bordetella bronchiseptica from different host animals. . J Med Microbiol 51:, 557–563.[PubMed]
    [Google Scholar]
  44. Sneath P., Sokal R.. ( 1973;). The Principles and Practice of Numerical Classification. San Francisco:: W. H. Freeman;.
    [Google Scholar]
  45. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  46. Stockbauer K. E., Fuchslocher B., Miller J. F., Cotter P. A.. ( 2001;). Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. . Mol Microbiol 39:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  47. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  48. Taylor B. L., Zhulin I. B.. ( 1999;). PAS domains: internal sensors of oxygen, redox potential, and light. . Microbiol Mol Biol Rev 63:, 479–506.[PubMed]
    [Google Scholar]
  49. Uhl M. A., Miller J. F.. ( 1996;). Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. . J Biol Chem 271:, 33176–33180. [CrossRef][PubMed]
    [Google Scholar]
  50. van der Zee A., Mooi F., Van Embden J., Musser J.. ( 1997;). Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. . J Bacteriol 179:, 6609–6617.[PubMed]
    [Google Scholar]
  51. Vojtova J., Kamanova J., Sebo P.. ( 2006;). Bordetella adenylate cyclase toxin: a swift saboteur of host defense. . Curr Opin Microbiol 9:, 69–75. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000035
Loading
/content/journal/micro/10.1099/mic.0.000035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error